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I. PURPOSE OF CONTRACT 

An engineering research study on novel electromagnetic waveguides, 

antennas, filters and related devices is to be carried out to supplement 

in-house research. Work on surface waves, antennas based on surface 

waves, and microwave branching filters is to be continued when special 

problems ar/.se. Special emphasis will be placed on studies concerning 

the beam waveguide and beam waveguide resonator. The program is to give 

special considerations to problems and structures which are important 

from the viewpoint of practical military application. 

It is contemplated that this program will include the following 

subjects: 

a. The determination of circuit properties of beam waveguide 

resonators. 

b. A study of the coupling problem between beam waveguide 

resonators and conventional waveguides. 

c. Investigation of antennas based on the beam waveguide. 

d. Frequency stabilization with beam waveguide resonators. 

e. Other problems related to the above which are agreed to by 

the contractor and contracting officer's representative. 

viii. 
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II ABSTRACT 

The research work that was carried out under this contract was a 

continuation of, but over and beyond, the studies« aade under Contract No. 

DA-36-Q39-sc-85188. This final report covers ths period froa September 1, 

1%4 to January 31, 1969.  During this period three distinct studies were 

carried out. Tvo of these studies dealt with topics closely related to 

the bean waveguide. The third study was a separate one and was concerned 

with the theory and design of a new type of filter called a cut-off coupled 

microvave filter. 

Part 1 of the report describes the general study made of beam wave- 

guide resonators at millimeter wavelengths. An important result cf this 

study was the derivation cf the equivalent circuits for resonators with in- 

put and output coupling.  An extensive bibliography on guided electromag- 

netic wave beams, beam waveguides, beam waveguide antennas, beam waveguide 

resonators, and Fabry-Perot resonators is included in Part 1 of this report. 

Part 2 of this report describes a new type of waveguide filter called a 

cut-off coupled microwave filter. The theory, design and fabrication öf 

these filters as well as the measurements aade on them is described in some 

detail. 

Part 3 of this report deals with two general applications of the beam 

waveguide of rectangular symmetry. One of the studies was concerned with 

the rectangular beam waveguide resonstor and the other with a rectangular 

beam waveguide antenna formed from the resonator. 

ix. 
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III.  INTRODUCTION 

The research work that was carried out under this contract was a contini- 

ntion of, but over and beyond, the studies made under Contract No. DA-36-039- 

sc-85188.  This final report covers the period from September 1, 1964 to Janu- 

ary 31, l*»o9.  During this period three distinct studies were carried out. 

Two of these studies dealt with topics closely related to the beam waveguide. 

The third study was a separate one and was concerned with the theory and de- 

sign of a new type of filter called a cut-off coupled microwave filter. 

These three studies are essentially independent of «ach other and hence 

each will be treated as a unit.  This report will therefore be divided into 

three parts, each of which will be self contained and will include a bibli- 

ography, appendixes when necessary and the conclusions arrived at as the re- 

sult of the study. 

Part 1 of the report will describe the research carried out between 

September 1964 and June 1967. Because of the large amount of experimental 

work detailed in the quarterly reports, the material will not be repeated 

here. Since the study was concerned in general with beam waveguide resona- 

tors at millimeter wavelengths, an overall view of the work will be given. 

An important result of this study was the derivation of the equivalent cir- 

cuits for the coupled resonators. Since this derivation has not previously 

been reported, it will be given here in some detail. An extensive bibliog- 

raphy on guided electromagnetic wave beams, beam waveguides, beam waveguide 

antennas, beam waveguide resonators, and Fabry-Perot resonators is included 

in Part 1 of this report. 

The research reported on in this section appears also as a part of the 
Ph.D. thesis of Arthur W. Murphy (107). 

1. 



Part 2 of this report will be concerned with the research carried out 

between September 1965 and September 1966.  The research performed during 

this period dealt with a new type of waveguide filter called a cut-off 

coupled microwave filter. Conventional waveguides arranged in a special 

configuration were used to form the filter. The theory, design and fabri- 

cation of these filters as well as the measurements made on them will be des- 

cribed in some detail. 

Part 3 of this report will describe the research carried out between 

3 
September 1966 and January 1969.  The research performed during this period 

dealt with two general applications of the beam waveguide of rectangular sym- 

metry. One of the 3tudies was concerned with the rectangular beam waveguide 

resonator and the other with a rectangular beam waveguide antenna formed from 

the resonator. 

| 
2. The research reported on in this section appears also as a part of the M.S. 

thesis of John R. Brauer. 
I 
I 

3. The research reported on in this section appears also as a part of the 
Ph.D. thesis of John R. Brauer. 

2. 
i 
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PART 1 

BEAM WAVEGUIDE RESONATORS 

AT MILLIMETER WAVELENGTHS 

Previous Studies 

The investigation carried out under this phase of the contract was con- 

cerned with a general study of the characteristics and properties of the cy- 

lindrical beam waveguide developed by Dr. Georg Goubau of the U.S. Array Elec- 

tronic Command. The work of Goubau and his associates is detailed in the 

i,*  ,        4,5,6,7,8,9 literature.   * 

Briefly, the beam waveguide consists of a launching and receiving an- 

tenna, usually horns, and a number of equally spaced lenses or phase correc- 

ting plates placed between the antennas to reset the cross-sectional phase 

of the guided beam. The cross-sectional field distribution of the beam is 

not constant with distance along the beam as is the case in conventional 

4. G. Goubau and J.R. Christian, "A New Waveguide for Millimeter Waves," 
presented at URSI-IRE Fall meeting, San Diego, California, October 1959. 

5. G. Goubau and F. Schwering, "On the Guided Propagation of Electromagnetic 
Wave Beams," IRE Trans, on Antennas and Propagation, Vol. AP-9, May 1961. 
pp. 243-256. This oaper was first presented at URSI-IRE Spring meeting, 
Washington, D.C., May 1960. 

(y.     J.R. Christian and G. Goubau, "Experimental Studies on a Beam Waveguide 
for Millimeter Waves," IRE Trans, on Antennas and Propagation, Vol. AP-9, 
May 1961, pp. 256-263. 

7. J.R. Christian and G. Goubau, "Some Measurements on an Iris Beam Waveguide", 
Proc. IRE, Vol. 49, November 1961, pp. 1679-1680. 

8. G. Goubau, Optical Relations for Coherent Wave Beams, presented at Sym. on 
Electromagnetic Theory and Antennas, Copenhagen, Denmark, June 25, 1962: 
published in Electromagnetic Theory and Antennas, in International Series 
of Monographs on Electromagnetic Waves, E.C. Jordan, Ed., Vol. 6, part 2, 
I'ergamon t*ress, New York, N.Y., 1963. 

9. G. Goubau, and J.R. Christian, "Some Aspects of Beam Waveguides for Long 
Distance Transmission at Optical Frequences," IEEE Trans, on Microwave 
Theory and Techniques, Vol. MTT-12, March 1964, np. 212-220. 

3. 



waveguides.  The amplitude and phase of the cross-sectional distribution vary 

with distance along the beam.  The cross-sectional amplitude distribution how- 

ever, is repeated at certain distances from the source. The original phase 

distribution at the source can be reconstituted by phase transformers placed 

at the point where the original amplitude distribution is repeated.  Thus a 

reiterative system is formed which is called a beam wveguide. The beam wave- 

guide can be made to have very small losses. The possible applications of 

the bean waveguide as a low loss transmission line for the millimeter through 

optical frequency range is of prime interest. The resonator formed from this 

transmission line, called the beam waveguide (or the Fabry-Perot) resonator, 

has among other desirable characteristics a very high Q in the millimeter 

through the optical frequency range. The beam waveguide resonator is there- 

fore a very useful millimeter wave circuit element which makes possible the 

extension of resonator techniques into the millimeter and optical frequency 

ranges. 

A brief review of *~he studies made on the beam waveguide and the beam 

waveguide resonator under previous contracts will be given. Such a review 

will assist in orienting the further investigations made under the present 

contract. 

The first phase of the early investigations was concerned with the meas- 

urement of the very small diffraction losses of the waveguide. Work on the 

measurement of the diffraction losses of the beam waveguide has been completed 

and reported on previously.   In addition, measurements of the field 

10. E.H. Scheibe, "Surface Wave, Antenna and Microwave Filter Engineering 
Research Study," Final Report on Contract No. DA-36-039-sc-78326, De- 
partment of Electrical Engineering, University of Wisconsin, Madison, 
Wisconsin, September 30, 1961. 

Also see J.B. Beyer and E.H. Scheibe, "Loss Measurements of Beam Wave- 
guides," IEEE Trans, on Microwave Theory and Techniques, Vol. MTT-11, 
January 1963, pp. 18-22. 

and E.H. Scheibe, "Measurements on Resonators Formed from Circular Plane 
and Confocal Paraboloidal Mirrors," Proc. IRE, Vol. 49, June 1961, p. 1079. 

4. 
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distribution within the beam for the lowest mode» and an analytical study of 

the losses of the higher modes which will propagate on such a line have also 

been completed. 

The study of the diffraction loss for the lowest loss mode of the beam 

waveguide was made with a loop coupled resonator consisting of a paraboloidal 

mirror as one end plate and a flat mirror as the other end plate.  Such a re- 

sonator simulates one iteration of the beam waveguide and the diffraction loss 

per iteration can be determined from the measured Q of the resonator.  Since 

the diffraction loss to be measured was very small and hence the Q of the re- 

sonator was very high, special apparatus and techniques were devised to mea- 

sure the Q. These studies and measurements were made at, or near, a frequency 

of 9 GHz. 

The remainder of the studies completed thus far were made at, or near, 

12 
a frequency of 35 GHz and are detailed in previous reports.   These studies 

are almost entirely concerned with applications of the beam waveguide or 

Fabry-Perot resonator. 

Though a large number of modes may be present in the beam in many in- 

stances, only the lowest loss mode survives in a reasonable length of beam 

waveguide.  In resonators formed from the beam waveguide it is possible, 

under proper conditions, to encourage the excitation of selected modes only. 

11. J.B. Heyer and E.H. Scheibe, "Higher Modes in Guided Electromagnetic 
Wave Beams," IEEE Trans, on Antennas and Propagation, Vol. AP-10, Mav 
1962, p. 349. 

See also J.W. Mink, "Higher Modes in Electromagnetic Wave Beams," M.S. 
Thesis, University of Wisconsin, Madison, Wisconsin, 1962. 

12. E.H. Scheibe, "Surface Wave and Antenna Engineering Research Study," 
Final Report on Contract No. DA-36-039-sc-85188, Department of Elec- 
trical Engineering, University of Wisconsin, Madison, Wisconsin, No- 
vember 30, 1964. 

See also J.W. Mink and E.H. Scheibe, "A Dual-Mode Beam Waveguide Re- 
sonator and Frequency Stabilizer at Millimeter-Wave Frequencies," IEEE 
Trans, on Microwave Theory and Techniques. Vol. MTT-14, May 1966, pp. 222- 
228. 



In cases where a single mode or a selected number of modes exists it Is ad- 

visable to know the field pattern or cransverse field distribution in the 

cross-section of the beam of individual modes or mode combinations. The 

radial field distribution, which depends on the Laguerre polynomials that 

appear in the solution of the beam waveguide, was calculated on a computer 

for a number of the lowest loss modes. With the radial dependence of the 

field known, the most favorable position of the coupling elements for launching 

the desired higher modes can be determined.  Because it is convenient to refer 

to individual modes at times, particularly the lower loss modes, it was nec- 

essary to devise « meaningful mode designation. A mode notation was chosen 

which used the degree and order of the Laguerre polynomial associated with 

each mode. 

The frequency stabilization of microwave oscillators was one of the 

studies carried out which used the beam waveguide resonator as a microwave 

circuit element.  The resonator was used as the frequency control or high Q 

reference cavity and was operated in a dual mode. The dual mode operation 

of the beam waveguide resonator made it possible to form a frequency discrimi- 

nator which was then used in a feedback loop to stabilize the frequency of a 

microwave oscillator. A marker generator, consisting of a very stable low 

frequency crystal and a series of varactor multipliers, was developed in 

order to measure both the long term and short term stabilities of stabilized 

microwave oscillators operating near 35 GHz.  The use of the beam waveguide 

resonator as a stalo cavity for oscillator stabilization was also investigated. 

The work done on the frequency stabilization of microwave oscillators 

using the dual mode beam waveguide resonator led to a study of the measure- 

ment of the dielectric constant of gases at 35 GHz.  In this application 

the dual mode beam waveguide resonator was put in an evacuated chamber to de- 

termine its resonant frequency. When a gas was admitted into the chamber 

6. 



the change in the resonant frequency of the resonator was a measure of the 

dielectric constant of the gas. The dielectric constants of dry air, helium, 

nitrogen, oxygen and argon have so far been measured with an accuracy of a 

few parts in 10 at 35 GHz. 

When the beam waveguide resonator operating in the low loss mode is 

fitted with one end plate which is partially transparent it becomes an anten- 

na. A study of such an antenna was made in which the partially transparent 

end plate was fabricated from polystyrene sheets with air spaces between 

them. This type of construction makes it possible to control the value of 

the reflection coefficient of the end plate. The energy passing through the 

end plate will radiate into space. 

The radiation pattern of this beam waveguide antenna was determined 

analytically from the field distribution in the aperture. Measurements of 

the radiation pattern of the antenna bore out the analysis made.  Other forms 

of the beam waveguide antenna are possible and additional antenna studies have 

been carried out and are detailed in Part 3 of this report. 

A problem which arises when using the beam waveguide is that of coupling 

energy into the system from a conventional waveguide system.  Usually a con- 

ventional microwave horn along with a dielectric phase corr-ctor is used. 

A method which has better launching efficiency uses a diagonal horn and a 

properly designed phase correcting lens. The field of the diagonal horn has 

an amplitude distribution which closely simulates the radial amplitude dis- 

tribution of the lowest loss mode of the beam waveguide. When the diagonal 

horn is used with a properly designed phase corrector, the output of the com- 

bination very closely simulates the field of the lowest loss mode of the beam 

waveguide in both amplitude and phase. 

Coupling energy from a conventional waveguide system into a beam waveguide 

resonator also raises problems and is the principal subject of Part 1 of this 

7. 
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report. Loop coupling can be used at a frequency of 9 GHz but is not prac- 

tical at .35 GHz. The details of the coupling schemes possible at this fre- 

quency are given in another section of this part of the report. 

\ 
\ 

IV.  THEORETICAL CHARACTERISTICS OF BEAM WAVEGUIDE RESONATORS   

A. General Considerations   

A beam waveguide resonator in general consists of two reflecting sur- 

i 

faces mounted normal to and concentric about a common axis.  Especially 

for microwave applications, it is advantageous to consider the iields in 

i 
the resonator as being due to a traveling wave beam propagating along the 

axis of the resonator. The resonance condition then is that the total 

phase shift of the beam must be a multiple of 2ir radians in traversing a 

path twice the physical length of the resonator. The resonance condition 

may also be defined in terms of a total phase shift of TT radians in a path 

length equal to the physical length of the resonator. 

The cross sectional energy distribution and the divergence properties 

of the wave beam will in general be a property of the shape of the reflec- 

ting surfaces and the separation between the surfaces. Due to the finite 

size of the reflectors, some energy will be lost past the reflectors. These 

diffraction losses are a function of the resonator size and the cross sec- 

tional energy distribution of the beam. The most common geometries used 

for beam waveguide resonators is shown in Fig. 4-1. 

When all resonator dimensions are large compared to the wavelength and 

when the reflector separation is large compared to the size of the reflec- 

tors, Kirchoff's diffraction theory may be applied to the fields in order 

to obtain the rec.iator field distributions as the eigenfunctions of the 

13 
general integral equations 

13.  H, Kogelnik, T. Li, "Laser Beams and Resonators", Proc. IEEE, vol. 54, 
10, October, 1966, p. 1314. 
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Y(1)E(1)(Sl) - / K
(2)(Sl,e2)E

(2)(s2) ds2 (4-1) 
32 

Y(2)E(2)(s2) - / K
(1)(s2,81)E

(1)(81) d8l (4-2) 

where the eigenvalues y       and y        give the loss and phase change of a 

wave propagating between reflector surfaces s1 and s_. The form of the 

kernels K depends upon the choice of coordinate system in which the prob- 

lem is to be solved. 

14 
In rectangular coordinates, 

• 

K(1)(x2,x1,y2,y1) - (^expHkKx^x^+Cy^)
2]/^} (4-3) 

where x and y are the coordinates on 81 

x» and y. are the coordinates on s~ 

D is the reflector separation 

k - 2TT/A. 

Expressed in the cylindrical coordinate system, (P,4>,z) 

K(1)(P2,P1,*2,*1) - (j/XD)exp{-jk[p
2+p2-2p2P1cos(!t.2-<|>1)]/2D}   (4-4) 

In both rectangular and cylindrical coordinate systems it is possible 

to reduce the two dimensional equations into two orthogonal equations in 

one dimension.  In rectangular coordinates, letting 

E(x,y) - E (x)E (y) (4-5) 
A   y 

then for Eq. 4-1: 

Yx1>Ex1><Xl) " /x*<2)<Vx2)Ex
2)(x2) 

dx2 (4"b) 

14. A. Fox, T. Li, "Resonant Modes in a Maser Interferometer", B.S.T.J., 
vol. 40, 1961, p. 485. 

15. L. Bergstein, H. Schachter, "Resonant Modes of Optic Interferometer 
Cavities, I. Plane Parallel Reflectors", J. of the Opt. Soc. Am., 
vol. 54, July, 1964, p. 896. 
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K(2) - (XDr^e^V^V*/'20 (4"8) 

K(2) - (AD)-1/2e^/4e-Jk<y2->l>
2/2D (4"9) 

y 

Y(D , Y(DY(1) (4-10) 
'     'x  'y 

Similar expressions can be written for Eq. 4-2 by interchanging super- 

scripts (1) and (2) and subscripts 1 and 2 in the above equations. 

In a cylindrical coordinate system, it has been shown that 

E(p,<J>) - R (p)e~Jn*      n - an integer (4-11) 

YnRn(P2)(P2)
1/2 = /pV

p2'pl)VPl)(Pl)1/2dpl (4~12) 

x  ■in">'1k T ,. P1P2W    Nl/2 -jk(p
2+p2)/2D (4-13) 

Kn(P2'Pl) "  D~ Jn(k —^l'^  "    l    2 

with J a Bessel function of the first kind and order n. 
n 

For solutions of Eqs. 4-1 and 4-2 to exist, it. is necessary that the 

fields across one reflector of the resonator be related to the fields across 

the other reflector by a multiplicative constant. Whether this condition 

can be met or not determines the stability criterion for the particular re- 

sonator geometry as discussed by Fox and Li (30). Stability is determined 

by the relationship between the reflector curvatures and the separation be- 

tween the reflectors. A stability diagram plotted in twc dimensions in t^rtns 

of the normalized coordinates G.. and G? is shown in Fig. 4-2. The normalized 

coordinates G, and C_ are defined by Gordon and Kogelnik as 

16. See p. 487 of reference in footnote 14. 

17. J.P. Gordon, H. Kogelnik, "Equivalence Relations among Spherical Mirror 
Optical Resonators", B.S.T.J., vol. 43, November, 1964, p. 2875. 

11. 
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D      Rl G. -  (1 - ■?-) ■— (4-14) 
1 rl    R2 

D     R2 G    -  (1 - ^-) / (4-15) <z r2    Rx 

where r. and r. are the radii of curvature, 

D is the separation, 

and R. and R» are the radii of the circular reflectors. A particular re- 

sonator geometvy will be stable only when 

0<G1G2<1 (4-16) 

A third normalized coordinate formulated by Gordon and Kcgelnik is 

given by 

N « R^/AD (4-17) 

Resonators which have the same G.. G_, and N are said to  be equivalent 

in that they satisfy the same resonance conditions, have the same dif- 

fraction losses, and have field patterns on the reflectors which are re- 

lated by a scale constant. 

B. Plane Parallel Reflectors 

For a resonator having identical plane parallel reflectors, G »G»-+l. 

This resonator has inherently one of the highest losses for a particular 

value of N of any of the stable resonator configurations.  Its losses are 

equaled by the concentric resonator, for which G«G2"-1.  Advantages which 

have led to the use of the parallel plane resonator in laser applications 

are the large percentage of the resonator volume which has substantial field 

components, and the dependance of the resonance condition on the mode number 

whicli allows control of the mode of operation by adjustment of the reflec- 

tor spacing. 

13. 



The losses for the dominant mode of a parallel plane resonator with 

Identical reflectors of circular shape have been obtained by Fox and Li in 

terms of the percent power loss per transit length D of a traveling wave 

18 
field as a function of the Fresnel number N characterizing the geometry. 

Percent Power Loss * 100(1 - |y|2) (4-18) 

where y = y   * Y   is the eigenvalue of Eqs. 4-1 and 4-2.  The loss 

characteristic for the dominant mode from Fox and Li is given in Fig. 4-3 

in terms of the loss L expressed in db per transit as a function of N. 

The percentage power loss is related to the loss in db by 

Ldb - 10 Log10 [1 - ^2S£] 

by 

In the linear region, it is claimed that the loss may be approximated 

19 

^i§2£ . o.207 N"1*4 (4-19) 

For N - 0, this gives L.. - 0.0358, which is in good agreement with Fig. 4-3. 

The phase velocity of the wave beam in general is slightly different 

from the velocity of a plane wave in the medium occupying the resonator 

volume.  For the parallel plane resonator, the beam undergoes an additional 

phase shift ß beyond the free space value. This term depends upon the trans- 

verse field mode, the length of the resonator, and the size of the reflectors. 

The resonance condition for the dominant mode becomes 

o 

18. See p. 466 of reference in footnote 14. 

19. See p. 481 of reference in footnote 14. 

14. 
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where I  » an integer 

A • free space wavelength 

3 • the additional phase shift in degrees. 

The additional phase shift ß is given in Fig. 4-3 as determined by Fox and 

Li.20 

An analytical solution for a parallel plane resonator made by Vainshtein 

gives expressions for the losses and the phase shift for circular reflectors. 

21 With a change in notation, the losses are given by 

Ldb - 10 L**10 [1 " 8*mn  „ My 2,2] (4'21) 
[(M+A) +A ] 

where A - - 6(1/2)/(TT)1/2 - 0.824 

6(1/2) is the zeta function of Riemann. 

X      -  (m+l)th zero of J . mn n 
1/2 M -  (8irN)x/    with N defined by Eq.  4-17. 

in ■ n ■ 0 for the dominant mode. 

The phase shift is given by 

0 " (^T)  Uxl     ®$H-2  1 (^-22) 
2 ™    [(M*A)2+AY 

For N ■ 10, Eqs. 4-21 and 4-22 give respectively a loss per transit of 

0.0358 db and an additional phase shift ß of 2.27° for the dominant mode. 

These values are in good agreement with the numerical values of Fox and Li. 

Equation 4-21 is expected to be valid over a larger range of N than Eq. 4-IS. 

It was also found by Vainshtein that the cross sectional field distri- 

bution at the reflectors was of the complex form 

20. See p. 467 of reference in footnote 14. 

21. L.A. Vainshtein, "Open Resonators for Lasers", J.E.T.P., (USSR), vol. 17, 
September, 1963, p. 717. 
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'»•♦> ■ Ä J„ <üTOff)7M> — ■♦ (4-23> 

where  f may be either f    or f   . 
x    y 

Theo: 

E • jk"1 (grad div f + k2f) 

and      H = curl f 

where      k w 2TT/X = the free space propagation constant 

and       j = J-l. 

For resonators having reflectors of rectangular shape and dimensions 

2a X 2b, the eigenvalues and eigenfunctions may be obtained from those of 

the infinite strip resonator. The infinite strip reflector has a finite 

"idth, but is assumed to have an unlimited length. Such geometries have 

been extensively investigated. (2)(5)(30). The eigenvalue for a rectan- 

gular  reflector 2a X 2b in size would be given by the product of the 

eigenvalue for a strip resonator of width 2a and the eigenvalue of a strip 

resonator of width 2b. The eigenfunctions may also be obtained as the 

eigenfunctions of one strip times those of another strip if one strip is 

assumed to extend along the x direction and the other along the y direction. 

C.  Confocal Geometry 

Confocal geometry is characterized by the condition that the separa- 

tion D between the two reflectors be given by 

D « ^  + f2 

where f, and f~ are the focal lengths of reflectors 1 and 2 respectively. 

For spherical curvature 

f - r/2 

where r is the radius of curvature. The generalized values for a confocal 

resonator with f.. equal to f- are 

17. 



G1 - G, - 0 

Most of the theoretical work on beam waveguide resonator structures 

has been done for the confocal geometry. Some of the reasons for the con- 

centration of effort on this particular geometry are, a) the confocal geo- 

metry is the only geometry in addition to the parallel plane case for which 

it has been shown possible to formulate analytical solutions, b) for a 

fixed value of the Fresnel number N, the confocal case has the lowest pos- 

sible losses, and c) the corfocal resonator may be considered a resonant 

section of the low loss beam waveguide developed by Coubau (99) (37) (40). 

The first formulation of the fields in the confocal resonator was ob- 

tained by Goubau and Schwering (36). The method consisted of the solution 

of the wave equation in cylindrical coordinates under the restriction that, 

the propagation constant along the axis may have a spectrum of values 

limited to a narrow range and, that 

|E(p,♦,+*)! - | E(p,♦,-*)! 

Allowing the field to be of infinite extent in the transverse (p,$) plane, 

22 
the solution was found to be: 

E  . (p/e)1'2»  - A a+u
2r1/2(f-)V LV (-e-)2 

nv   H      nv   nv        p    n p 
z       z 

•{exp[-l/2(^-)2 - jip]  f™  v} (4"24) 

z 

tfi - kz - (2n+v+l) tan_1u + l/2u(^-) (4-25) 
Pz 

y 
where L arc Laquerre polynomials of order v and degree n 

u - -^ (4-26) 

^o 

22, G. Goubau, "Optical Relations for Coherent Wave Beams," Sym. of Elect. 
MaR. Theory and Antennas, Pergammon Press, New York, 1963, p. 908, 915. 

18. 
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p2 - p2 (1-hi2) (4-27) 

whe'e p , the mode parameter, is obtained from 

2J      ,„  dl, . ,   ,„  d2, 
(kpo) - (2 - ^) fldl - (2 - -f)  f2d2 (4-28) 

with \l> '  0 at z = 0. 

k - 27T/A 
o 

A = the free space wavelength 

d. and d_ are the distance from z ■ 0 of surfaces 

of constant phase 

f. and f~ are the equivalent focal lengths of the sur- 

faces of constant phase at d. and d„. 

£  may be polarized in either the x or y direction, with H  then in the 

y or -x direction assuming propagation in the +z direction. 

The amplitude functions of E  are plotted at u - 1 in Figs. 4-4, 4-5, 

and 4-6 as a function of the normalized radial coordinate x where 

p 
X"aR 

R - the radius of the reflector. 

The function a is given by 

a - (k/D>l/2R (4-29) 

when the resonator has two identical reflectors of radius R and separation 

D. The relation between a and N is 

a - (2TTN)
1/2 

and is a more convenient parameter for use with confocal resonators than N. 

Due to the low diffraction losses a practical confocal resonator would have 

n   lesö Luaii i. 

The generalized Laguerre polynomials are given by 

n 2 * 
lv « 7   (n+v)!     (-x ) 
n / (n-i)!(v+i)!   i! 

i«o 

19. 
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The modes for beam waveguide resonators are hybrid modes, that is, 

tl.'iy are neither TE, TM, nor TEM to z, however the longitudinal components 

of the fields that do exist are small. The modes, which are determined by 

their Laguerre polynomials will be designed by the integers n and v. This 

has the advantage that the mode designation will tend to indicate the shape 

of the reflectors for the resonator under discussion. Thus the modes will 

be designated L , L , etc., for reflectors of circular symmetry. 

For a confocal resonator, the reflector surfaces coincide with the 

surfaces of constant phase. These surfaces are parabolic, but for re- 

flector diameters small compared to the radius of curvature, the con- 

stant phase surfaces may be approximated by spherical curvatures. Under 

the condition f=f„*D/2, Eq 4—2-3 becomes 

kp* - D/2 

and p* - (D/2k)(1+u2) 

At the mid-plane of the resonator, taken as z ■ 0, Eq. 4-24 becomes 

Env(z"0)-A Ä)V(«B)i nvN D   n D 

texp{-l/2(^)2-jt|,}](^^) (4-30) 

where from Eqs. 4-25 and 4-26 it is found thatiji = 0 in the plane z ■ 0. 
2 

At z - +D/2, u «* 1 and p • D/k. Then, 
z 

[exp -l/2(te)2-#}](^ $ (4-31) 

and again using Eqs. 4-25 and 4-26 

2 
l|> « + k D - (2n+v+l) j + 1/2 (~£) (4-32) 

2 *      u 

23. 



The resonance condition for the confocal full resonator is that 

<Kz- f) - <Kz— f) - In (4-33) 

where .1 is an integer. 

lit  - kD - (2n+v+l) £ (4-2A) 
i - I 

The last term in the expression frr ty may be neglected since the re- 

flectors fit surfaces of constant phase. Therefore, \\>  may be evaluated 

at p - 0. 

When the reflecting surfaces for the resonator, or phase correctors 
■ 

for the beam waveguide, are of finite extent, the fields will be modified 

slightly and there will be a diffraction loss at each reflector. The 

I 
value of this loss as a function of resonator size and mode number has 

been obtained by Goubau and Schwering (36) and Beyer and Scheibe (6) by an 

expansion of eigenvalue equations similar to Eqs. 4-12 and 4-13 in terms 

of the generalized Laguerre polynomials. The losses shown in Fig. 4-7 

- 

: 

23 
were obtained on a computer using the first ten terms of the expansion. 

The integral equations for the fields in the confocal resonator with 

circular reflectors of finite size have also been evaluated by numerical 

integration (31), and by power series expansion (62). The results obtained 

in these cases appear to be in good agreement with those presented in Fig. 4-7. 

In an analysis similar to that used to determine the beam modes in a 

system of cylindrical symmetry, Schwering obtained the fields for beam modes 

in rectangular coordinates for a square or rectangular symmetry condition. 

24 
For fields of infinite extent in the transverse plane 

23. J. Beyer, E. Scheibe, "Higher Modes in Guided Electromagnetic Wave 
Beams," Trans. IRE. AP-10, May 1962, p. 349. 

24. F. Schwering, "Reiterative Wave. Beams of Rectangular Symmetry," 
Archiv Elect. Übertragung, vol. 15, December 1961, p. 558. 
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E  - 4TTU v [l+z2)(l+z2)]"1/4. 
nra     o o   u    v 

2 

(l+zu)        (l+zv) l+zu 

•2 z x'2    z y'2 
-JL^)}«e-cp{-j i/4(-H-5-) + (-—=-) + 
l+z* 1+z     1+z 

V U V 

j[(n+l/2)tan'1 zu + (m+l/2)tan"
1z ]} (4-35) 

x' ■ 2u x y' « 2v y o *     oJ 

z    - 2u2 f z - 2v2 £ 
u    o k v    o k 

u and v are analogous to the p of the cylindrical case.  The confocal 
o     o o 

condition corresponds to 

u - v = (k/2z )1/2        z - D/2 
o   o      o o 

The He  (w) are Hermit polynomials defined by nm 

Hen(w) - (-l)
nexP(w

2/2) -£ (a""*'2) (4"36) 

dw 

Under confocal conditions, Z - Z ■ 1 for z » z and Z - Z ■ 0 
u   v o     u   v 

for z ■ 0.  The resonance condition for the confocal case can be derived 

as 

li\  - kD - (n+1/2) | - (ro+1/2) |   I,  mf n integers        (4-37) 

Schwering has solved for the fundamental mode energy distribution and dif- 

fraction losses when the phase correctors of a beam waveguide are of finite 

extent by an expansion of an integral equation similar to Eqs. 4-2 and 4-3 

in terms of the Gaussian Hermit functions characterizing the unlimited fields. 

Boyd and Cordon have shown that the fields for the confocal resonator 

with finite rectangular reflectors can be formulated in terms of prolate 

26. 
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spheroidal wave functions (10). These functions are also shown to reduce 

to the Gaussian-Hermite functions obtained by Schwaring when the reflectors 

arc sufficiently large.  Boyd and Gordon also give the diffraction losses 

for the six lowest loss mooes for a square reflector 2a on a side, and for 

the three lowest loss modes of an infinite strip resonator of width 2a. 

By using the procedure mentioned on p. 17, the losses for any rectangular 

reflector can be determined. 

D. Reflectors of Arbitrary Curvature 

Analytical solutions for the eigenvalues and eigenfunctions of Eqs. 4-1 

and 4-2 have not been obtained for arbitrary reflector separation and curva- 

ture. By the use of numerical integration, Li has solved for the eigen- 

values and field distribution at the reflectors for both full and half re- 

sonators for several ratios of reflector curvature to reflector separa- 

tion (48) (53). The ratios analyzed were for the radius of curvature vari- 

able from the separation length (confocal) to infinity (parallel plane). 

Another approach for determining the losses of a resonator having ar- 

bitrary reflector curvature involves matching the reflector curvature and 

spacing to an equiphase surface of a beam mode defined by Eqs. 4-24 

through 4-28. An equivalent a value for the resonator to be used in de- 

termining the diffraction loss is obtained by finding a confocal geometry 

which would have the same losses as the real resonator. Such a method 

was proposed by Boyd and Gordon during a study of resonators having rec- 

tangular reflectors (10). 

The analysis Is based on the assumption that two reflectors at equiphase 

surfaces will have the same diffraction loss if the field distributions and 

reflector dimensions are properly scaled versions of each other. That is, 

required that 

R/w(z ) * R'/w(z') 
O O 

27. 



where w(z ) is the beam radius defined as the radius at which E falls to 
o 

1/e of its maximum value.  The geometry and notation for this problem are 

shown in Fig. 4-8. By inspection of Eq. 4-24 for the L° mode 

, .   _l/2„   ,2d\l/2 ,. .  z2Nl/2 ,.  m w(z) »2   p - (-T—)    (1 + —r) (4-38) 
z    k d,2 

where p has been chosen for the confocal condition at z ■ d'.  In order 
o 

to find 

use 

i' - (k/2d')1/2R' 

R* R 

(2d'/k)1/2(l+d^)1/2     (2dVk)1/2(l+-d-) 
d 2 d 2 

R' - 
21/2R 
TT72 

where 

21/2(k/2d')1/2R    1/2     (d/d')1/2 

,2 1/2 * £        *    .2 1/2 
(U-f-> <l4-> 

d 2 d 2 

21/2 a (^r + 4T> (4-39) d  d 

a - (k/2d)1/2R 

for the resonator.  It is now necessary to find the correct value of (d') in 

terns of the resonator parameter« d, r, R. 

From Eq. 4-25, define a constant phase surface by 

<1> ■ kz+(l/2)u(-£-) - constant 
Pz 

28. 
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-1 
whore the small correction introduced by tan u has been neglected. Then 

1  .p.2   u   2 
z - z ■ — u(-^~) «*  =• p 2k "vp. 

2kp 
(4-40) 

where kz » ij/ for p - 0. This ie of the form 

25 

z = f(p) «Ap* 

an'' the radius of curvature is given by 

r - (l+f'2(p))3/2/f"(p) 

Therefore 

r -  (l+4A2p2)3/2/2A - 1/2A 

r • kp  /u - kp  (1+u )/u z o 

For the confocal beam 

u - z/d' 

and 

p-H) 

kP - d' o 

z <1+ /?  ,* 
Thus, as z •*■ 0, r •* °° and at z ■ d , r ■ 2d which is the confocal con- 

dition. Now, matching this curvature to that of the resonator reflector 

at z » d 

d - (rd - d ) 

(4-41) 

(4-42) 

•  ,1/2 a = 2   a (r-d)1'2,  (d)1/2 

(d)1/2   (r-d)1/2 

-1/2 

2 1/* . „ ,1/2  ,d  d_. 
a - 2   a (— 2' 

r 

i 

Equation 4-42 indicates that d tor the equivalent confocal geometry may 

be defined for resonators satisfying the condition (r-d) > 0. 

(4-43) 

25. R.E. Johnson, F.L. Kichemelster, Calculus with Analytic Geometry, 
Allyn and Bacon, Boston, 1961, p. 431. 
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E. Resistive Losses 

One of the more important features of beam waveguide resonator struc- 

tures is the small amount of metallic surface necessary to confine a very 

large volume distribution of energy. However, the reflectors do intro- 

duce resistive losses in the resonator, and must be considered along with 

the diffraction losses in order to determine the operating characteristics 

of the device. For the purpose of evaluating the reflector losses, the 

traveling wave field in the resonator may be considered to be incident nor- 

mally upon the reflector, although this will only be exact for cases where 

the reflectors are fitted to surfaces of constant phase. 

By transmission line analogy, the load impedance represented by the re- 

flector may be given for metallic reflectors as 

Z. - (pui/a)1/2 45? - -^ (yu>/a)1/2 (4-44) 
L /2 

a ■ conductivity in mho/meter 

a) "  2nf radians per second 

u » 4nX 10  henry/meter 

26 
The energy reflection coefficient may then be calculated as 

|r|2 - 1 - 2(2ue/a)1/2 (4-45) 

under the condition that 2OJ£/O<<1. The loss in db per reflection may be 

expressed as 

Hlb L,.   = 10 Log   {1 - 2(2oje/o)1/2} 

» 4.34 Ln  {1 - 2(2uie/a)1/2} (4-46) 

which for 2u)£/a«l reduces  to 

,1/2 Ldb •* 8.68(2ojt;/c) '   db loss/reflection (4-47) 

26. J.C. Slater, Microwave Transmission, Dover Publications, New York, 
1959, p. 116. 
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Three of the common materials used for reflecting surfaces are silver, 

27 
brass, and aluminum. The d.c< conductivities of these materials are: 

Silver:  61 X i,  mho/m. 

Brass:  15 X 10 mho/m. 

Aluminum:  35 X 10 mho/m. 

The loss in db per reflection based on the d.c. values of conductivity for 

these materials at a frequency of 35 GHz would be 

Silver:  2.2 X 10-3 db 

Brass:  4.43 X lO-3 db 

Aluminum:  2.9 X 10-3 db 

Previous measurements have shown that with aluminum reflectors at 9 GHz 

the loss per reflection was 0.0021 db rather that the 0.0016 db predicted on 

the basis of the dc conductivity. This is equivalent to an effective in- 

crease in surface resistivity of 1.3, which is consistent with experimental 

investigations of microwave surfaces as reported by Lending (7) (50). 

Allowing this increase in surface resistivity due to surface imperfections, 

the following working values for the reflection losses are obtained 

Silver:  2.86 X 10-3 db 

Brass:  5.77 X lO-3 db 

Aluminum:  3.77 X 10~3 db 

V. DERIVATION OF THE COUPLED RESONATOR EQUIVALENT CIRCUIT 

A. General Considerations 

In order to better predict the effects of variations in the resonator 

parameters and variations In the size of the coupling apertures, a lumped 

element equivalent circuit for ehe resonator together with the coupling 

27. The Microwave Engineers' Handbook, Horizon House, Massachusetts, 1966, 
pT-332: ~2m 



networks would be helpful. Prediction of raeasureable characteristics and 

the design of efficient coupling networks could then be achieved using stan- 

dard network theory. 

The derivation of the equivalent circuit for the resonator, will start 

with the relation between the unloaded Q, Q , of the resonator and the total 

power loss P,   of the resonator r loss 

Plo„. ■ ^ <5-" 

where W is the energy stored in the resonator. 

The power lost must be supplied to the resonator by the magnetic dipole in 

the coupling aperture, and is given by 

Ploss - 1/2««U««;.S*] (5-2) 

where B is the magnetic flux density 

and m is the magnetic dipole moment. 

All field, and field related, quantities are peak values and B and m are 

considered to be at the plane z - 0. Due to the presence of the reflecting 

surface in which the coupling aperture is located, the total field at the 

t 

aperture, B , will be equal to 2B where B0 is the peak amplitude of the 

resonator traveling wave field. 

B.  Confocal Half Resonator 

The energy stored in the dominant mode of a half resonator of length 

D/2 is with the aid of Eq. 4-24 given by 

W - TieE2 p2D/2 
o z 

where E is the field of the dominant mode, 
o 

Using 

then 

E2 . R „2 . ±  B2 
o  e o  ue o 

w " *B«B*P?D/2H (5-3) 
33. 
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Inseiting Eqs. 2-2 and 2-3 into Eq. 2-1, with B « 2B 
o    o 

* 2 
WTTB B p D *      o no 

juB m OOP 

o ■  ~W~ ^u 
* 

Solving for B 
° * 

or 

and since B - yH 

D 
O irp2D o 

B 
o - 

-2juQum 

2,, 
Tip D Ko 

H 
o 

* 
-2jQ m J  u 

irp2D o 

(5-4) 

(5-5) 

The field obtained is the maximum field at resonance. The general expres- 

sion for the field Is a function of frequency, and decreases in magnitude 

below the maximum value obtained above, as the frequency deviates from the 

resonant frequency. 
-2jQ m 

H (u) -  5^ f(«) f(»)<1 (5-6) 
„p2D 

According to Goubau, the following useful definitions for equivalent 

28 currents and voltages may be made 

2        2   2 I ■ k m where k ■ u ye 

and 

With these definitions an equivalent resonator impedance can be found and 

is, 

H.V/^I      k3/f z (5_7) 
m   J   p I    J   y o 

28. G. Goubau, Unpublished notes. 
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From Eq. 5-6 for H - 2H (u) in the plane of m 

2H (*»)  -AjQ 
—2 r-Ä f (u) (5-8) 

7ip2D 
o 

and the impedance presented by the resonator at the point of excitation 

is 

\ - 4 /| \ f <-> (5"9) 
k    up D 

o 

The impedance is real and reaches a maximum at the resonant frequency f . 

Therefore the equivalent circuit is a oarallel resonant circuit with 

R --i/E A. (5-10) 
°  k3  " irp2D 

o 

From the relations 

Q - —~   and   «2 - — xu  <•> L o  LC 
o o 

for a parallel resonant circuit, obtain 

R 
L - —2- (5-11) 
o  u Q 

o Hi 

and 

% 
co ' ^TTT (5"12) 

o o 

In addition to exciting the resonator fields, the magnetic coupling 

also causes a radiation field. The amount of power coupled into the radia- 

tion field may be obtained by using the relation 

Ploss - 1/2Re t-K'™*1 
t 

where B is equal to twice the magnitude of the homogeneous B field of the 

dipole moment m because of the presence of the reflector. The magnetic 

29 
field components of a magnetic dipole are given by 

29. See reference in footnote 28. 
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(lcR)J   (kR)' 
BR - =j^ U(—~ + -^T)e"jkRcose (5-13) 

and 

9   4Tr    (kR)3   (kR)2   kR 

Expending Che exponential term in a power series in R 

e"JkR = 1 - jkR - l/2(kR)2 + j-^ff" + -^ff- •••• (5-14) 

and considering only the component B with 0-0 since the dot product is 
K. 

to be taken with m, and m is R directed when 6*0. 

BR " Tff y(-^3 + ÖRT " i  ! * I kR + •-) (5"15) 

The homogeneous field of the dipole is the R independent portion of the 

total field 

B - - jSfk (5-16) 

and B is equal to two times B. Then the power radiated is given by 

loss  2«4TT-3      3TT  e 

The impedance represented by this radiation loss is obtained by 

arranging Eq. 5-16 in the form of Eq. 5-7. Thus, using the total field 

at the reflector 

3 

- - - t2^- <5~18> m    - on 

then from Eq. 5-7 

Z(radiation) - Rd - /| ■—• (5-19) 

Since n is related to the current, and the same m excites both fields, 

the equivalent circuit will be a radiation resistance in series with the 

shunt resopant circuit representing the resonator mode. 

The elements of the equivalent circuit have been derived from the 

ratio of H to m for the resonator and for the radiation fields. The dipole 

36. 



moment m is proportional to the incident field on the aperture and to the 

size and shape of the aperture, 

m - - m^ (5-20) 

where m is the polarizability of the aperture and H. is the magnetic field 

strength incident on the aperture. For a small circular aperture, of radius 

a 

m - - 1 a3 and a - - | a3 (2H.) (5-21) 
6o 3 o   1 

The polarizabilities for other common small aperture shapes also have 

30 31 
been determined and tabulated.  *   Prom £q. 5-21 with H * 2H±  combined 

with Eq. 5-7 

-_a  --jk
3/£z H    3-3 

m    8 o e o 

Using this form a value of Z , a 

Za " ' * ! 4 <T>"3 73 - - ^-572<T>"3- - ^-56(f)"3 (5-22) 
a„ -3 __i_ .V-3 H -3 

8TT 

referred to the field on one side of the aperture is obtained.    For trans- 

mission through the aperture,  the total Z is  twice Z 
tf 

d "3 ao "3 
Z - 2Z - - j9.12(y)  - - Jl.lUCy) (5-23) 

32 
and is in agreement with the equivalent circuit element given by Goubau. 

Also according to Goubau, when the coupling through an iris is from a 

waveguide section, there is an impedance transformation from the impedance 

of the waveguide. This is represented by a quarter wavelength line section 

whose characteristic impedance is given by 

30. S.fi. Cohn, 'Determination of Aperture Parameters by Electrolytic Tank 
Measurements," Proc. IRE, vol. 39, 1951, pp. 1416-1421. 

31. G. Matthaei, L. Young, E. Jones, Microwave Filters, Impedance Matching 
Networks and Coupling Structures, McGraw-Hill, New York, 1964, pp. 232- 
235. 

32. G. Goubau, Electromagnetische Wellenleiter und Hohlräume, Wissenschaftliche 
Verlagsgesellschaft, M.B.H., Stuttgart, Germany, 1955, p. 402. 
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z2 - 7200 -4- <5"24> t      ab 

; 

where a and b are respectively the width and the height of the waveguide, 

and X is the free space wavelength at the frequency of operation. The com- 

plete equivalent circuit for the singly coupled confocal half resonator is 

shown in Fig. 5-1. 

When coupling is performed at the curved reflector, the magnitude of 

the power coupled into the resonator for a fixed m is reduced due to the 

wider distribution of the beam. Since at the curved surface the magnitude 

of the B field will be 1//2 of its value at the plane z-0, the effective 

real part of the impedance seen by the coupling aperture will be reduced by 

a factor of 1//2 also. 

This reduction in coupling strength at the curved reflector can be in- 

cluded in the equivalent circuit by using au Ideal transformer of turns ratio 

1/4 
2:1. A complete equivalent circuit for a confocal half resonator with 

small circular apertures and fed from a waveguide at both input and output 

ports is shown in Fig. 5-2. 

In order to reduce the circuit of Fig. 5-2 and simplify analysis, all 

elements except the paiallel tank circuit are transformed to the source or 

load sides of the A/4 transformers at the input and output respectively. 

The transformed aperture impedance becomes 

or 

.  Rd   2jwLa 
Y - -f- + —5-*- (5-26) 

Z    Z 
t     t 

A shunt parallel resonant circuit to which input and output coupling is 

performed via quarter wave transformers will appear as a series resonant cir- 

cuit in series with the line, and of the transformed impedance 
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Z    " »— o      Z 
O 

w 

t o 

Fro« Eq. 5-11 

juRo 

ovu 
i 

(w  + <Su>)R o            o 
u Q oMu 

and 

j 5s (1 + £*> (5-27) 
Qu wo 

where 6u Is the deviation of u fron u>  , and 6u/u    is constrained to be o        o 

much less than unity in magnitude. 

Similarly, from Eq. 5-12 

,    u R    u R        R       , 
1 m    o o o o    o ,..  on>. 

jwC   JuQ " j(u +«tü)Q " JQ u " u ' °'iS) 

o     u     o    u    u      o 

Combining Eqs. 5-10, 5-24, and 5-25, 

Y -4+jwC -J-r- o  R  J  o  J uL o 

1 U Ob) 
YoT + ir7 <5~29> o    o 

2       2 
•  S     2Z Q * 

o     o    o 

in the vicinity of u - u . 

A further reduction will bring the output coupling elements and the 

load impedance Z from the secondary to the primary side of the 2  :1 

transformer. The reduced equivalent circuit now appears as in Fig. 5-3 

and is of the form of the circuit analysed in Appendix B of this report and 

shown in Fig. B-l. 

C.  Confocal Full Resonator 

In order to formulate the equivalent circuit for the full ccnfocal re- 

sonator, no change in the coupling elements is required, nor is the radia- 

tion resistance R affected since these quantities are not functions of 
1 /A 

the resonator geometry as derived.  Idea) transformers with 2       si turns 

ratios are employed both at the input and the output since boer. couplings 
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are in curved reflectors where the beam density is reduced below that used 

in calculating the resistance of the resonator equivalent circuit.  For 

fixed field amplitudes, the energy stored in the full resonator is twice 

that stored in the half resonator for equal field amplitudes at the plane 

z=0.  An inspection of Eqs. 5-3 through 5-10 shows this change in energy 

storage appears as a reduction by a factor of 2 in R of Eq. 5-10.  Thus 

for the full resonator 

R -X/I-ii «_/llJ!ü (5-3D 
°   3  e  2    2  £ 2 w Ji' 

o 

The quantities L. and C are still determined from Eqs. 5-11 and 5-12. 
o     o ^ 

The reduced equivalent circuit for the full confocal resonator is shown 

in Fig. 5-4. 

D. Equivalent Circuits for Higher Modes 

To complete the analysis for the equivalent circuit of a coupled con- 

focal resonator, the effect of higher order modes raust be added to the re- 

sonator equivalent circuit.  Calculations show that for both full and half 

confocal resonators there will be hip ter mode excitation when there is a 

coupling aperture in one of the reflectors.  The presence of higher mode 

fields has also been indicated by the field perturbation measurements. 

Furthermore calculations indicated that the field amplitude of the higher 

order mode will be a function of the aperture size.  In these calculations 

it has been assumed that most of the energy is transferred into these higher 

order modes from the high energy field of the low loss dominant mode through 

the perturbation caused by the coupling apertures. 

Measurements show that for the full resonator with fixed aperture sizes, 

the field distribution is distorted from that of the lowest or L mode and 
o 

the measured (unloaded, uncoupled Q) Q  values are lower at the confocal 

spacing of 114 cm. than those measured at a reflector separation of 10S cm. 
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The calculations show that the cross-mode coupling Is strongest to the L. 

mode from the L mode. Since the degree of coupling between the two modes 

is a function of the amount of overlap in their respective resonant re- 

sponses, and since the resonance conditions are functions of both the mode 

numbers and the reflector separation, the coupling between modes will be a 

function of reflector separation.  The relative coupling will be a maximum 

when both modes are resonant at the same reflector spacing and frequency. 

For a fixed frequency, the coupling will approach zero when the resonances 

are separated far enough so that the responses no longer overlap. 

It will be assumed that a fifty percent reduction in coupling will 

take place at a reflector separation where the peak of the low Q mode 

response coincides with the 3 db point on the dominant mode response as 

Illustrated in Fig. 5-5. Thus the resonant frequency of the L mode is 

separated from the resonant frequency of the L. mode by a frequency dif- 

ference equal to one-half of the 3 db bandwidth of the L mode.  In order 
o 

to calculate the amount that the reflector separation must be changed 

from the confocal condition to achieve this frequency separation of the 

modes, the resonancecondition given by Eq. 4-25 will be used with M being 

the number of integer half wavelengths of reflector separation, 

H|- kD/2 - (2n4vH)tan_1(-^-=-) 
2kpo 

with v=0, and using the relation 

which is identical to Eq. 4-28 under the condition of identical reflectors 

separated by a length D and with the change of notation that b ■ focal length 

of the reflectors. Then 

k^- K 2 
(2n+l)tan"1 (-, *    ) - M?                     (5-32) 

D   x 
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Fröre k - 2n/A - 2irf/c, 

f " 2Ü  lM + \ (2n+1)   tan 1 (jl        )] (5"23) 

Evaluating the rate of change of frequency with variation in the reflec- 

tor separation in the neighborhood of confocal operation 

U  - £ r2rnin   1      1    1     4b, 

4b       x D 
D (5-34) 

-*£tM + f (2n+l)tan-
1 -g-J- 

Simplifying, 

|| - (-^){M + I (2n+l)(  *  tan'1   *   } (5-35) 

D D 

Evaluated at D=2b (confocal operation) Eq. 5-35 becomes 

l£ - (-^{M + (2n+l)(| - 1)} (5-36) 
ou        2D 

Note that the partial derivative of the resonant frequency with respect to 

the reflector separation is a function of the mode number n; a condition 

that is necessary if the resonant frequencies of the modes for non-confocal 

reflector spacing are to be separated. 

For the L mode (n-0), 

Afi ■ i *> - ^2IM + f - « *■> <5-37> 

where AD is the deviation from confocal spacing of the reflectors and Af. 

is the corresponding shift in resonant frequency for the L° mode.  For the 

L. mode (n»l) 

f « -£=• [M + £ - 2] AD (5-36) 
2  2D2     v 
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Then 

Af - Af - ^ (1 - h (5-39) i i     2Dz    ir 

It is now desired to find the value of AD which will cause the resonance 

frequencies for the two modes to differ by one half on the 3 db bandwidth 

of the fundamental mode.  Recall that this is the condition under which 

the coupling between the modes is assumed to have been reduced by fifty 

percent from its maximum value. 

Measurements made on a particular resonator show that half the dif- 

ference between the minimum and maximum values of Q was approximately 

150,000. Also for a resonant frequency of 35.07 GHz, one half on the 3 db 

bandwidth was 1.17 MHz.  Solving Eq. 5-39 for AD with 

c ■ 3 x 10  m/sec 

and   D * 114 cm. 

yields AD - '.'.82  cm. 

The changes in reflector spacing on either side of confocal spacing at which 

Q values of 150,000 were measured, were 3.5 cm and 3.0 cm. Within the limits 

of experimental error and the approximations made, the calculated and mea- 

sured values are in excellent agreement. This is further proof that in the 

full resonator, a decrease in Q for the dominant mode takes place in the vi- 

cinity of confocal spacing and is due to coupling to the L mode. It also 

appears that the dominant coupling mechanism between the two modes is the 

perturbation introduced by ehe presence of the coupling apertures in the 

reflectors. 

The lumped element equivalent circuit for a higher order mode may be 

formulated in the same manner as that used for the dominant mode. For 

equal field magnitudes, the energy stored in the L and L. modes will have 

48. 
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2 
the same total energy for the same field amplitude constant E . (E  for nO x nv 

confocal spacing with v-0, Eq. 4-24).  In Eqs. 5-3 through 5-10 the ex- 

pression for R is the same for both modes. The quantity Qu is, with the 

exception of the resonance conditions of frequency versus reflector sepa- 

ration, the only mode dependent factor. The coupling element values are 

not functions of the resonator mode, and hence the equivalent circuit of the 

second mode becomes a parallel tuned resonant circuit Y - in series with the 

Y calculated for the fundamental mode. This is shown in Fig. 5-6.  In the o " 

reduced equivalent circuit also shown in Fig. 5-6, the L. mode is repre- 
t 

sented as a series resonant circuit in parallel with Z . This series cir- 

cuit is given by 

.   Z?   23&u26w 
Z 0 - ~ + - =*— (5-40) o2  R    R  u 

°2   °2 °2 

where the subscript 2 refers to the elements of the L. mode circuit.  u 
l o2 

will only be equal to u at confocal spacing of the resonator reflectors. 

E. Applications of the Equivalent Circuits 

An example of the application of the equivalent circuit will be given 

which will also serve to confirm the validity of the representation. The 

full resonator equivalent circuit shown in Fig. 5-4 will be treated.  It 

will be assumed that the resonator length has been changed Just enough from 

the confocal length so that the L mode resonates alone. The output wave- 

guide is to be terminated in a variable position short circuit. Then the 

unloaded Q measured at the input port will be a function of Z in series 
i 

with the parallel combination of Y.//2 and the variable position short cir- 

cuit which presents values of reactance between the exCremes of an open 

circuit and a short circuit. Actual measurements made on such a configura- 

tion are plotted in Fig. 5-7 and show the unloaded Q versus the position of 

49. 
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the variable short circuit terminating the output coupling aperture. 

The test resonator had a D - i.08 cm., an f - 35.0 GHz, and RG96/y o 

waveguides at each port by means of which coupling to the resonator was 

accomplished. In RG96/u waveguide at fQ, 

2f-1.25 

therefore     Z  - 377(1.25) - 472 ohms c z 
From Eq.  5-31 with D - 108 cm, k - 2TT/X and X - 0.855 cm, 

'♦(377)0 , 
R „ 2L. . 7#64 x 10 *Q (5-41) 
°  54ir(108)2 

and from Eq. 5-19 

The maximum value of measured unloaded Q will occur at the input port 

when the position of the short circuit is such that an effective open cir- 

cuit is present at the reference plane T, of the equivalent circuit (Fig. 5-2) 

which separates the output waveguide elements from the resonator elements. 

Under this condition, the internal losses are due only to RQ which is given 

by Eq. 5-41 as 

R - 7.54 x 10"4 Q (3-42) o u max 

When Q     is 553,000, obtained from theoretical loss calculations, then 
^u max 

R - 422 ohms. The lowest measured value of Q will be obtained when the 
o u 

short circuit is so positioned that the radiation resistance effectively 

shunts tue resonator. On the resonator side of the coupling transformer 

/2 Rd - 56.6 ohms 

The parallel combination of R and /I R. gives an effective RQ of 

R' - [R ,||^2R.] - 50 ohms o    o     d 
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For negligible change in the reactive components of the parallel resonant 

circuit; i.e., constant stored energy, the unloaded Q and the effective 

value of R are still related by Eq. 5-41. 

Qu ~—3 ' 65«300 
7.64 x lCT* 

The measured minimum Q shown in Fig. 5-7 was approximately 62,000, although 

there is some uncertainty in this value due to a scarcity of data points in 

the minimum Q region. 

When the output waveguide Is terminated in its characteristic impedance, 

the load impedance is transformed by a A/4 transformer and appears in series 

with R. giving an effective load impedance of 

z2 Rl -Rd 
+ r- 

c 

where 

Z2 - 7200 -~ 
t      ab 

Now for RG96/U waveguide at 35 GHz 

a - 0.7112 cm, b - 0.3556 cm, and A - 0.855 cm. 

Zt - 720° (0.7U?(o!3556) - 20'800 

and R^ - 40 + 2%}j°'° - 84 ohms 

The quantity /ZR will appear in shunt with R and the effective resonator 

real impedance becomes 

R^ - IRJI/2RJ - [4221 j 119] - 92.8 ohms 

-4 
Then Q * 93/7.64 x 10  * 121,000. . The measured Q when the resonator was 

terminated in its characteristic Impedance was 130,000 from Fig. 5-7. 

The results obtained by this application of the equivalent circuit are 

consistent with the approximations Involved and the degree of experimental 

error that may be expected. It has been assumed that the L, mode was not 
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resonating and that the tapered waveguide and slot feed used was approxi- 

mated by the circular iris equivalent circuit. The degree to which this 

can be expected to hold would depend on the validity of representing the 

aperture field by a single dipole otaent m, and the degree to which the 

iris equivalent inductance L effected the matched load condition. 
8 

A second application illustrating the usefulness of the equivalent 

circuit for a beam vfve<>uide resonator, will compare Q measurements made 

on a half resonator with the behavior of the equivalent circuit of Fig. 5-2. 

The input coupling is at the curved reflector and is also where the measure- 

ments were made. The size of an aperture in the flat reflector (at z«0) 

was varied. Due to the thickness of the plate in which the aperture was 

located (approx. 1/16 inch), the aperture was non-transmitting until the 

aperture diameter was made greater than the thickness. The radiation 

resistance of the aperture for radiation Into a half space was shown to be 

40 ohms in the previous application of the equivalent circuit. If the 

aperture is free to radiate into all space, i.e., both transmission through 

and reflection from the aperture, the radiation resistance would be 20 ohms. 

By Eq. 5-10 

k    Trp D    k    TD     54ir(114) 
o 

R - 1.77 x 10"3Q 
o ^u 

For a parallel resonant circuit 

at C        _ 
Q - -|_ . JL (5-44) 

o 

' 

t. 
i 

Thus by comparison of Eq.  5-43 and Eq.  5-44, 

w L - 1.77 x 10"3 ohms o 
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The presence of the aperture in the flat reflector adds 

Z - R, + 2juL 
a   d   J a 

In parallel with R . The effective value of R as measured at the input 
o o 

port is given by 

c     -1 + Rer 1 1      .1 + a  
*o VW      «o       (R.)2+(2u,L )2 

a a 

and 

%'irr t i ;    \        ' - i  ;   %L0K„ <*-*> oo     — +  —   + 5«-" s- 
*°       (Rd)'+(2a,La)2 q

U)nax  (Rd)
2+(2«La)Z 

Equation 5-46 for Qu is plotted in Fig. 5-3 as a function of the iris radius 

a0 for the reflection loss case. Also shown in Fig. 5-8 is the case of the 

combined transmission and reflection loss represented by Eq. 5-48 where the 

effective resistance shunting RQ is 

Ra"1/2 Re r -rm (5"A7) 
d a 

and 

%" -T—Jmrn— <5-*8> 
1      .    o o d 

Qu (R.)2+(2wL )2 

max d' a 

Also plotted for comparison is the measured data for this configuration. 

The constants used for the calculated values were 

Q    - 294,000 
u 
max 

ao "3        -3 
2uL  - l.l44(-r)  - 0.71 a i 

a        A o 

A - 0.855 cm. 

A transition from the behavior expected when reflection losses alone 

are present, to that predicted when transmission losses through the aperture 

are also present is shown in Fig. 5-8. The measured curve shows reasonably 
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good agreement with predicted values. The predicted Q for the resonator 

when a =0 is much higher than the measured value. This discrepancy Is be- 

lieved due to an unaccounted for factor in calculating the theoretical 

losses, and may lie either in tha value of the end plate resistance or in 

the fact that the L? mode may have been present in the resonator. 

VI.  CONCLUSIONS AND RECOMMENDATIONS 

The principle objective of this research has been to explore the use 

of beam waveguide resonators as circuit elements at millimeter wave fre- 

quencies. While a detailed summary of the derivation of the resonator 

characteristics described in section IV was not presented, the extensive 

i 

bibliography referenced throughout will aid in locating an analysis for 
'. 

a particular geometry if such an analysis is desired. 

t; 

The emphasis in the presentation of the resonator characteristics of 

section IV was on the diffraction losses and resonant frequencies as func- 

tions of the geometry and the mode number. The equations governing the 
I 

energy distribution for the various modes and plots of the field distri- 

\ 
butions for some low loss modes are presented for the confocal geometry. 

An analysis has also been presented of an equivalence relation by means 

of which the diffraction losses for non-confocal resonators of either full 

length or half length may be determined from the diffraction loss versus 

geometry function of Fig. 4-7 for a confocal resonator. 

Generally neglected in many analytical studies, but important in re- 

sonators designed to have high unloaded Q values at microwave frequencies 

are the resistive losses due to  the metal reflecting surfaces. These 
i 

losses are calculated for the three most common reflector materials In 
i 
■ 

terms of a db power loss per reflection. 
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Early experimental difficult? s were encountered; the principle one 

was the inability tc obtain the theoretically predicted high Q values at 

35 GHz. Coupling tc the resonator was with circular apertures excited 

through a circular transition from standard rectangular waveguide. This 

coupling problem has not been reported on in other experimental studies 

that have been made on open resonators, and it did not appear when coaxial 

loop coupling was used with these resonators in a series of X-band experi- 

ments. A calculation was made of the power loss from the resonator due 

to radiation from an equivalent magnetic dipole induced in a small cir- 

cular aperture by the resonator field, and rough agreement between this 

loss and the unaccounted for losses of the test resonator was obtained. 

A series of experiments was performed to study in greater detail the 

departures from the theoretically predicted behavior of the resonators 

which might be due entirely or in part to the presence of the coupling 

apertures in the reflectors. The equipment used for these experiments, 

which was a swept frequency generator and a generator for point by point 

response measurements, is described in Appendix A. A discussion of the 

reflected response of a coupled resonant circuit is given in Appendix B. 

The equations presented in Appendix B were used to obtain information about 

the resonator properties from measurements. 

With respect to the radiation loss caused by an aperture in a reflec- 

tor, agreement was obtained with the predicted values futn small aperture 

theory, within the limits of experimental error. This applies to circular 

apertures with radii approaching a quarter wavelength. Since this aperture 

was essentially a circular waveguide operating in the cutoff frequency 

region and of finite length, the radiation loss was predominantly back- 

scatter from the aperture. 
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For thin apertures, the radiation loss is due to backscatter and to 

transmission through the aperture. This latter loss was verified by the 

increase in loss measured as a function of aperture size. This increase 

in loss is in general agreement with the difference in loss obtained be- 

tween a transmitting and non-transmitting aperture shown in Fig. 5-8. 

The experimental data (shown in Fig. 5-7) obtained when a small aper- 

ture in the center of the curved reflector of a full resonator was ter- 

minated in a variable position short circuit and when it was terminated 

in a matched load showed the drastic effect on the characteristics of an 

open resonator which can take place. A comparison of the maximum and 

minimum Q values obtained as a function of the position of the short cir- 

cuit with the Q value obtained when the aperture was terminated in a match- 

ed load indicates that the phase angle of the effective reflection coeffi- 

cient of the resonator load is more important than the magnitude. Coup- 

ling energy > ut of the resonator into a resistive load causes a decrease 

in the Q below the value obtainable with a reactive termination, but it is 

not a condition which leads to minimum Q.  The calculations of pp. 52 

through 53 show that the minimum and maximum values of measured Q are 

related to whether the radiation resistance of one aperture is effectively 

open circuited or short circuited by the reactive load. 

The low Q values obtained at confocal spacing, coupled with the fact 

thai: the Q appeared to rise when the reflectors were moved in either di- 

rection from confocal separation led to investigation of the unloaded Q 

versus reflector spacing. It was found that the Q decreased in the area 

of confocal operation for the full resonator, but no noticeable decrease 

in Q was found for the half confocal resonator. The possible existence 

of an optical instability region of operation for a full resonator is 
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described on pp. 12 and 13. This unstable operation occurs when the radii 

of curvature for the two reflectors are different, and the separation be- 

tween the reflectors falls between the two radii of curvature. Measure- 

ments of the radii of curvature cf the reflectors for the test resonator 

showed that they were Identical to within +0.5 inch. If present, this 

region of instability would occur over too narrow a range of reflector 

separations to account for the broad decrease in Q measured near confocal 

spacing. 

A discussion of the multiple mode operation of the full and half re- 

sonator is given in Appendix C. The tabulation in Table C-2 of Appendix C 

shows that the two resonators are not equivalent in their resonance char- 

acteristics. In particular, the L? mode is simultaneously resonant with 

the L mode in the half resonator, while both the L- and L? modes are simul- 
o 12 

taneously resonant witi. the L dominant mode in the full resonator. Both 

of these modes have the same angular symmetry as the dominant mode and are 

the next most likely modes to be excited. Calculations indicate that the 

presence of coupling apertures in either type of resonator can cause trans- 

fer of energy from the dominant mode to the higher loss mode. The presence 

of these higher loss modes was also indicated from measurements made of the 

radial fields in the resonator for various aperture diameters. The calcu- 

lations in section V concerning the range of reflector separation over 

which the L mode and the L? mode in the full resonator can interact are 
o 1 

In good agreement with the range of separation over which the low Q values 

were actually measured. 

As a result of this investigation, emphasis must be placed on two dif- 

ferences which exist between the beam waveguide resonators and conventional 

closed cavity resonators. The first of these is the predominantly real 

impedance introduced into the resonator by the coupling apertures. Whereas 
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in a closed cavity resonator a perturbation of the boundary conditions can 

generally be represented as a reactance and primarily affects only the re- 

sonant frequency or cut-off frequency, in the bean waveguide or beam wave- 

guide resonator a perturbation of the boundary conditions will cause radia- 

tion and will be primarily represented by a resistive effect. The per- 

turbation in an open resonator will primarily affect the Q of the device 

rather than the resonant frequency. The second difference which must be 

emphasized is the inherent multi-mode nature of the confocal full and half 

resonators. While the modes are, in the ideal sense, orthogonal, the 

coupling apertures in the reflectors couple energy from the dominant low 

loss mode to the higher order high loss modes. The experiments have 

shown that this coupling can become quite strong when aperture sizes 

approach the dimensions of a half wavelength at the resonant frequency. 

To complete this investigation of beam waveguide resonators for milli- 

meter wave circuit applications, lumped element equivalent circuits for 

both full and half resonators are derived in section V. The effects of 

small circular coupling apertures are accounted for in the equivalent cir- 

cuits including the radi tion losses introduced by the apertures. The 

analysis made will apply to any point source excitation, if suitable ex- 

pressions for the coupling element impedance are used, and a relation be- 

tween the induced magnetic moment in the aperture and the field quantities 

can be found as a function of the geometry, while the equivalent circuits 

that were derived are for single mode operation of the resonators, a dis- 

cussion is included concerning the addition of resonant circuits to repre- 

sent higher mode effects. 

With the aid of the equivalent circuits and by application of stan- 

dard network analysis, it is believed that the radiation losses intro- 

duced by the coupling apertures can be minimized for desired operating 
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conditions of Q and Insertion loss. In order to minimize multi-mode 

operation and the attendaut problems, it is recommended that the confo- 

cal half resonator be used whenever possible. When the full resonator 

is used operation at a reflector separation slightly different from con- 

focal spacing is recommended. The change in reflector separation neces- 

sary from confocal spacing will depend on the Q for the fundamental mode, 

and may be calculated by the method used on pp. 45 through 48 keeping 

in mind the approximations involved. 
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VIII.  APPENDIX A 

MEASITRING EQUIPMENT AND PROCEDURES 

During the course of the experimental study on which this report is 

based, it was necessary to perform certain measurements repeatedly on many 

open resonator structures.  In order to facilitate these measurements cer- 

tain special equipment was constructed, and measurement procedures were 

standardized. 

All of the data obtained on resonant structures required only that 

relative power and frequency be measured. A block diagram of the signal 

generator portion of the test equipment is shown in Pig. A-l. As much 

of the microwave circuitry as possible was mounted on a portable chassis 

to achieve flexibility. As assembled, the generator is capable of de- 

livering 14 milliwatts from 34.0 GHz to 35.5 GHz. 

Any one of several modes of operation may be selected by using the 

waveguide switches and the klystron repeller control switches. With the 

aid of the Dymec Model 2650A Frequency Synchronizer, the VA-97 klystron 

may be locked in phase 30 MHz away from a stable, spectrally pure signal 

from a frequency multiplier chain. The 30 MHz difference signal gener- 

ated by the klystron and the frequency multiplier is phase locked to a 

30 MHz reference signal. For fixed frequency operation, the third har- 

monic of a 10 MHz crystal oscillator contained in the Eymec may be used 

as a reference.  For variable frequency operation over a narrow range 

while phase locked, an external variable frequency oscillator nea.' 30 MHz 

may be used. The phase comparison circuit permits the difference fre- 

quency to be varied from 28 MRz to 32 MHz.  Since the frequency change is 

direct, i.e., a 1 MHz change In the 30 MHz reference frequency produces a 
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1 MHz change in the klystron frequency, the 30 MHz reference oscillator 

need only be stable to one part in 10 for a klystron stability of one 

part in 10 . 

With the phase lock loop disconnected, the repeller of the klystron 

may be modulated to obtain either swept frequency or pulse operation. As 

shown in Fig. A-2a, 60 Hz power may be switched to the repeller to obtain 

a variable width 60 Hz swept frequency from the klystron. The 60 Hz sig- 

nal is also fed to a terminal on the rear of the chassis and may be used 

for the blanking voltage on an oscilloscope. 

The diode modulator of Fig. A-2b inserted after the frequency con- 

trol loop, permits the klystron output to be amplitude modulated in either 

the phase locked or swept frequency modes of operation. The variable po- 

sition short circuit permits the amplitude of the carrier relative to the 

amplitude of the sidebands to be controlled up to complete carrier sup- 

pression. The modulation range is from a few kilohertz to 50 MHz using 

a 1NS3 microwave diode; the modulating signal being supplied from an ex- 

ternal source. 

Incorporating the frequency discriminator shown In Fig. A-3 and moni- 

toring part of the klystron output, makes available an output voltage which 

is a function of the klystron frequency.  The discriminator output is used 

to drive the horizontal amplifier of an oscilloscope when the klystron fre- 

quency is being swept. 

Much of the circuitry of the generator was designed to facilitate the 

use oi a swept frequency response measurement procedure shown in Fig. A-4. 

When the signal is amplitude modulated, three responses due to the reson- 

ator are displayed on the oscilloscope,  one each as the carrier and two 

sidebands are swept through the response. When the modulating frequency is 
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known, the linearity of the display may be adjusted by tuning the discrim- 

inator and thus a frequency calibration of the horizontal scope scale can 

be obtained. 

When more accuracy than can be obtained by the swept frequency method 

is required, a point by point measurement of amplitude response versus fre- 

quency is necessary. The anticipated resonator Q's in these measurements 

was as high as 500,000. At 35 GHz, the half power band width of such a 

response is only 70 KHz. For an accurate measurement of such a response 

the spectral purity and stability of the source must be better than 10 KHz. 

Although there will be a degrading of the klystron stability due to 

noise in the phase lock loop, the most important consideration is the sta- 

bility of the reference signal to which tr.« klystron is locked. This sig- 

nal is supplied by the combination of the marker frequency source and the 

frequency multiplier and mixer shown in Fig. A-l. The marker frequency 

source is driven by a crystal oscillator using a Bliley type BG 61A-5, 5 

MHz crystal mounted in a proportional control oven. The oscillator is 

followed by two buffer amplifiers. The crystal stability as quoted by 

the manufacturer to be 0.001 ppm/day. Using vacuum tube multipliers and 

amplifiers, the 5 MHz reference is raised to 150 MHz at 10 watts. A 

varactor tripler circuit converts this to 450 MHz at 5 watts. The final 

multiplier is driven at 450 MHz and 150 milliwatts. The excess power is 

dissipated in resistive padding between the multiplier stages. The input 

power to the final stage must be limited to the dissipation rating of the 

Microwave Associates MA 4361 pill varactor which is mounted in a section 

of 35 GHz waveguide. 

The marker frequency used for phase-locking was 35.01 GHz, and is the 

78th harmonic of 450 MHz. Markers are also available for phase-locking at 

all other multiples of 450 MHz within the pass band of the waveguide. 
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Based on the 5 MHz oscillator stability, the stability of the marker is 

9 
one part in 10 short term. Checks with an HP 851A/8551A Spectrum Ana- 

lyzer showed that the marker was stable to within 10 MHz at 35 GHz, and 

the phase locked klystron was also found to have a dispersion of less 

than 10 KHz. 

The receiver used to measure the resonator response consisted of a 

VA-97 klystron as a local oscillator, a balanced mixer, a 60 MHz I.F. 

amplifier with 100 db gain and a 12 MHz bandwidth, a second detector, 

and a microammeter. To prevent variations in the gain of the I.F. ampli- 

fier over its passband from affecting the signal level indication on the 

microammeter, the local oscillator was frequency locked 60 MHz from the 

received signal by means of a Micro-Now Model 201 Microwave Frequency 

Stabilizer. The microammeter at the receiver output was set at a reference 

level, and the change in the received signal level was determined by re- 

turning to the reference level by using a calibrated microwave attenuator 

in the signal path between the transmitter and the receiver. 

Both the transmitted and reflected responses of resonators were 

measured. The reflected response however yielded the most information 

about the resonator under test. The transmitted response provides mea- 

sured values of the loaded Q and total insertion loss. When the coupling 

to the resonator is sufficiently weak, the measured Q approximates the un- 

loaded Q. The reflected response yields values of the loaded and unloaded 

Q, the degree of coupling, and the losses associated with the coupling net- 

work. The data necessary and the procedures for the data evaluation are 

given in ^pendlx B. The majority of the data presented in this report 

has been obtained from the measurement of the reflected response of the re- 

sonators. The block diagram for the general measurement setuo is given in 

Fig. A-5.  A coupling network used quite extensively is shown in Fig. A-6. 
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The waveguide feeding the resonator tapers gradually to the dimensions of 

the narrow slot shown. For the coupling network of Fig. A-6, the variable 

attenuator for determining relative power would be located between the re- 

sonator and the receiver in order that the forward power monitor could be 

used to insure constant source power as a function of time and frequency. 

A photograph of a typical confocal half resonator for testing is 

shown in Fig. A-7. The three support rods are steel, with the flat frame 

pieces made of 3/8 inch aluminum. The reflectors are mounted at four 

points to the frame upright plates. Compressible bushings between the re- 

flectors and the frame allow reflector alignment.  The center section 

shown in Fi*. A-7 contains one of the reflectors. This section mounted 

on three ball bushings, is movable and permits the reflector separation 

to be adjusted. A micrometer control, part of which is visible at the 

far right of Fig. A-7, allows fine positioning of the reflector over a 

2.5 cm range. 
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IX. APPENDIX B 

DISCUSSION OF Q 

The quality factor or 'Q' of a device, circuit, or medium may In the 

most general sense be defined as the ratio of energy stored to the rete if 

energy dissipated.  In the case where the energy stored is in harmonically 

time varying electromagnetic fields, Q is defined by 

Q . 2-rr Energy stored 
Energy dissipated per cycle 

or 
W 

Q - 2TTf f. 

where f is the frequency 

W = stored energy 

P = the power loss, or energy dissipation per second. 

For a lumped element resonant circuit or a closed cavity resonator, the Q 

is normally specified at w ■> u , defined as the resonant angular frequency, 

at which the stored energy is a maximum. 

The concept of 'Q' is not limited to resonant systems. It may also be 

applied to a transmission medium in which case it is a measure of the rate 

of dissipation of energy from a traveling wave. Consider a wave expressed by 

E - E0(x,y) exp[-(oHß)z] 

Where a and 3 are both real, ß is the propagation constant in radians per unit 

length, and a is the attenuation constant in nepers per unit length. The 

energy density is given by 

w » l/2eEE* 

i /->r.ir2 -2az w - l/2eE0 e 

and the time rave of decrease of the energy density is 

dw  dw dz  ,/0 _2.  .  -2az 
dF * Tz dt " 1/2veE0(-2a) e 
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and from the expression for 0 

Q - 2»f %Ut  - 2t£ C^) 

when v is the velocity of propagation. 

The power loss in an interval of length D i8 given by 

Ldb " 4'43 ln<1_2aD) " 8.68aD 

for a«l.    And since f/v - 1/X 

_      8.68otD 
(B-l) 

This expression for the Q is the most useful form for use with open 

resonators and expresses the losses as a percentage over a given interval or 

iteration.  Care must be used, however, in the choice of the interval D over 

which the losses are calculated. Every interval of length D irrespective of 

the locations of the end points must have the same total loss. Thus, if the 

losses are the same at each reflector of the resonator, the Q may be defined 

in terras of the losses over the interval D where D is the separation between 

the reflectors. If, however, the losses are different at the two reflectors, 

the Q raus'r. be defined in terms of a length 2D and the total loss when ex- 

pressed in db, is the sum of the losses at each reflector. 

With the aid of the information given in section IV, the theoretical un- 

loaded Q of an open resonator may be determined from a knowledge of the re- 

flector separation and the diffraction and resistive losses for the reflect- 

ors. For circuit applications and experimental studies, the 0 must be ex- 

pressible in terms of the measurable quantities such as frequency and relative 

power. 

A general equivalent circuit for an open resonator is given in Fig. B-l. 

The T networks at the input and output are general representations of coupling 

networks.  If an ideal transformer is to be included in the representation of 

the coupling network, all elements shown may be considered as transformed to 
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the resonator side of the transformers.  For a shunt rather than a series 

representation of the resonator, a quarter wave length of transmission line 

may be included in Z-j and 7,^.    The reason for this is that for a cavity to 

appear as a short circuit or an open circuit at resonance and to appear the 

opposite off resonance depends upon the choice of the reference plane. The 

theoretical unloaded and uncoupled Q discussed above may be defined in terms 

of R, L, and C by the relation 

%0 

u L 
o 
R 

where u o 
-  2irf    ■ 

o •   (LC) 
-1/2 

(B-2) 

(B-3) 

Due to the multiple mode resonance properties of open resonators, each 

mode may have a different Q value, resonant frequency, and coupling coeffi- 

cient, and therefore a resonant circuit together with a coupling network 

will be required for each mode. These circuits may be considered connected 

in parallel between the source and the load. For the circuit of Fig. B-l, 

the scattering matrix is the best representation at microwave frequencies, 

since the reflection coefficients at the terminals and the transmission co- 

efficient are easily measurable. 

The method used here was to divide the circuit into three sections 

which are shown between the reference planes of Fig. B-l. The ABCD matrix 

was calculated for each section and the ABCD matrix for the overall circuit 

was obtained by multiplying the Individual matrices together. The ABCD 

matrix was then converted to the scattering matrix. 

The ABCD matrix is defined as follows: 

Ull  "121 

tABCD] - [uj - 
u21  u22 

(B-4) 
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Now for the network of Fig. B-l 

Z,  Z, 

[u] - 

1+^  ? 
Z2  Z2 

f *z" Z2    Z2 

1  Z, 

0  1 

1 + 
7

JL   h 
z5  z5 

ZQ       ZC 

and hence the u.. elements for the overall matrix become 

un"zkt(w(z5+w + iziii 

U12 " ZX t(W'Z|2 + Z0
(Z2+Z1)(Z5+Z6) 

'25 

Izli   (z5+z6)l 

'21 " Z^ I VZ4+Z5+Z2+Z3] 

(B-5) 

(B-6) 

(B-7) 

(B-8) 

^-z^f^^^wv^v1 (B-9) 

where JZ^ - Zfo  + Z^ + Z^ 

and |Z|2 - Z4Z5 + Z5Z6 + Z4Z6 

The conversion from the ABCD matrix to the scattering matrix may be found in 

the literature, and including normalization with respect to the input and out- 

put line impedances may be written in the form 

where 

S - 

11    12 

21    22 

Z20U11 + U12 ~ Z10Z20U21 " Z10U22 

>U " Z20U11 + U12 + Z10Z20U21 + Z10U22 

(B-10^ 

(B-ll) 
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2(2l0Z20>1/2<UllU22 " U12U21> 

>12 " Z20U11 + U12 + Z10Z20U21 + Z10U22 

■ —      2w1/2  
21 Z20U11 + U12 + Z10Z20Ü21 + Z10U22 

c    Z20U11 ' »12 + Z10Z20U21 - Z10U22 ,- ... 
22 ' Z20U11 " U12 + Z10Z20U21 - Z10U22 

For the scattering matrix, S... would be the input reflection coefficient 

assuming a load which has no reflection. When the load is mismatched such 

that it has a reflection coefficient I" , then the input reflection coefficient 

33 
to the network is given by 

(s  )2r 
r - sn+ r^f« (B-15) 

The matrix element S.» is the transmission coefficient from the source to 

the load under conditions of matched load. For the network of Fig. S-1 it 

can be shown that u-.u«. - u2.u-2 - 1. Then by definition the network will 

be reciprocal in that S . - S... 

Many of the measurements made in this study were performed on a single- 

ended resonator; i.e.» there was only one coupling port. This requires that 

Z«Q - 0 in Eq. B-ll. Then 

S  , "12 I Z10U22 
11 " u12 + Z10u22 

Furthermore Z. - 2. ■ 0 in Eqs. B-7 and B-9 in order to obtain the single port 

circuit and hence 

-z10[z2 + z3 ♦ z0] ♦ [Iz^ -«- z0(z2 -^ ?1)1 
sii " z10[z2 + z3 + z0] + [\z\x + z0(z2 + Zj)]        

lB~" 

A similar result may be obtained by the more direct but less general meth- 

od of calculating the input reflection coefficient of a T-network terminated 

in a load Z.. 

33. J.L. Altman, Microwave Circuits, D. Van Nostrand Co., Inc., Princeton, N.J., 
1964, p. 402. 
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Solutions relating the measurable dependence of S-., on frequency to the 

Q of the circuit represented by Z_ have been worked out for the cases of loop 

34 
and probe coupling to closed cavities.   Loop coupling may be represented by 

the shunt circuit of Flg. B-2, and probe coupling may be represented by the 

series circuit. The external circuit losses are represented by R , R rep- 
S  8 

resents losses in the coupling network, and n represents the degree of coup- 

ling between the external circuits and the cavity. In order to characterize 

these circuits, three Q values are defined such that 

0 - 2u Ener«y 8tored  (B-17) XL    total energy dissipated per cycle 

0 . 2TT 
Ener«y stored (B_18) 

x0     (Energy dissipated per cycle in R and in 
the elements of the coupling network) 

0  - 2* Ener8y stored  (B-19) H00    Energy dissipated per cycle in R 

where R represents the internal losses of the resonator. 

The Q factor measurable at the input terminals to the circuit is QL. 

The reflected response of either circuit of Fig. B-2 is shown in Fig. B-3 

in terms of the square of the input reflection coefficient as a function of 

35 
frequency. From Sucher and Fox, the loaded Q is given by 

% " « 2of (B"20) 

where 
I |2 |  ,2 1/2 
|p| -IPJ 

o - I ö—2-*-] (B-21) 

IP^-IPI
2 

and p ■ reflection coefficient at any frequency f 

p - reflection coefficient at resonance 
o 

Pj - reflection coefficient far off resonance. 

34. D.D. King, Measurements at Centimeter Wavelengths, D. Van Nostrand Co., 
Inc., New York, 1952, pp. 129-137. 

35. M. Sucher, J. Fox, Handbook of Microwave Measurements, 3rd Ed., Vol. II, 
Polytechnic Press, New York, 1963, p. 425. 
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and 26f is the frequency difference between the two points where the relative 

2 
reflected power is given by p . If 26f is measured at the reflected power 

level where 

2  2   2 
/-(Pi + P0)/2 

then a - 1 and Q. - f /26f. XL   o 

Also from Sucher and Fox, in terms of the square ■ of the input reflec- 

tion coefficients 

Qn 

\ 2 -  |pj  - IPJ 

Qoo i+ IPJ 
1 " IP0I 

if the resonator is overcoupled, 

and                                Q0 2 

\ 2+|P0|- lpxl 

(B-22) 

(B-23) 

(B-24) 

Q00     1+'pil 
of" rri^r 

if the resonator is undercoupled. 

Whether a particular resonator is overcoupled or undercoupled at re- 

sonance can be determined from a knowledge of the behavior of the phase of 

the reflection coefficient as the resonator is tuned through resonance. For 

a method of determining the degree of coupling without phase information about 

the reflection coefficient, consider Eq. B-16 and the series circuit of Fig. B-2. 

Let Z, ■ Z3 = 0 in Eq. B-16, then |z|. = 0, and 

Z10Z2 " Z0Z2 *  Z0Z10 
" ii ' z10z2 + z0z2 + z0z10 

2 
Letting Z. - n R and Z. = R + juL - j(l/uC) * R at resonance with the assump- 

tion that the source is matched to the transmission line such that Z... ■ n~R,, 

then, 
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n2R R 
8 

- n\ 

sll 

n2R +R 
8 

n2R R 
8 + n2Rg 

n2R +R 
8 

(B-26) 

By definition, the circuit is undercoupled when 

n2R R 
, 8  > n R- (B-27) 

n R +R 
8 

and the circuit is overcoupled when 

n2R R 

2 
S  < n Rg (B-28) 

n Rg+R 

Whe° n2H * n RsR    2 

n2R +R 
8 

n «8 

then S- ■ 0 and the circuit may be considered critically coupled. If by 

some means R is increased, S.. and thus |p | will increase for the •Mer- 

coupled case. When the circuit is overcoupled and R is increased, S,- and 

|p | decrease in magnitude, or approach zero. With beam waveguide resona- 

tors, R may easily be momentarily Increased by inserting the hand into the 

edge of the resonator fields. Observation of the increase or decrease of 

|p |  then indicates whether the circuit is overcoupled or undercoupled. The 

choice of which of Eqs. B-22 through B-25 are to be used in calculating the 

unloaded and uncoupled Q values from the measured reflection «efficient mag- 

nitudes both on and off resonance and the measured loaded Q can then be made. 

93. 



X. APPENDIX C 

MULTIPLE MODE OPERATION OP COHPOCAL RESONATORS 

In order for energy to be coupled £roa one mode to another due to a 

perturbation such as a coupling aperture In a resonator end plate requires 

that both nodes be resonant simultaneously if there Is to be a large energy 

transfer, or that the response curves for the resonances of the two nodes 

overlap to a considerable degree. An attempt to show that It Is possible 

for two nodes to exist simultaneously In a bean waveguide resonator will 

be the object of this section. The electric fields of the nodes for a 

bean waveguide are given by Eq. 4-24, thus 

, -1/2    v      2 
E««v " A«v<1+U >    <f-> L« tf-> <C_1) xnv  nv        p   n p *      s 

2 
.«xp[- 2 (—) - J ♦ 1 -ln v# 

where 

♦ « k« - (2n + v + 1) tan^u + | <p/pz>2 

n - 0, 1, 2, . . .; v - 0, 1, 2, . . . 

L - Laguerre polynomial of degree n and order v 

♦ - polar angle 

u » */kp„ o 

k - 2*/X 

A - free-space wavelength 

/ 2 2 
p • radial coordinate /x +y 

P 2 - P 2<l+u2> z o 
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and p is a mode set parameter determined by the focal length of the lenses 

and their separation, and may be expressed as follows: 

2 m /g - m E (c.2) ok 

where f » focal length of paraboloidal phase corrector 

and  D - distance from z - 0 to the lens or curved reflecting plate; 

(see Flg. A-5). 

Note that D here is defined as the distance between reflectors of a confocal 

* 
half resonator. 

Now each mode, as determined by n and v, has a plane phase surface at 

z - 0 i.e., the phase i> - 0 for all p. The phase shift which is dependent 

on the mode but Independent of p is of Interest in setting up the resonance 

condition for a beam waveguide resonator. Thus 

* - kz - (2irtvfl) tan"^ (C-3) 

where u - 0 at z - 0. 

Now for a confocal half resonator 

D - f 

p 2 - D/k 
o 

and u ■ z/D 

The change in phase that takes place In traversing a distance D from z «0 

to z - D is from Eq. C-3, 

A* - kD - (2n+v+l) tan_1(~) 

A* - kD - (2n+vfl) J (C-4) 

In the previous sections of this report D represented the length of the full 
confocal resonator. 
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The condition for resonance is that the phase shift in going from z • o to 

z - D be multiples of n radians. Thus 

kD - (2nfv+l) J - mir (C-5) 

If a confocal half resonator is to resonate at the lowest loss mode, i.e. 

n » v - 0, Eq. C-5 becomes 

kD - J - m* (C-6) 

Mow kD - T- must remain constant if other modes are to resonate simultaneously 

with the L° mode. That is, since m can change by integer values only, the 
o 

tern 

(2n+v+l) - b 

must be such that multiple values of v occur. Thus 

kD - b J « m« (C-7) 

where by inspection it can be seen that b can only take on values 

b - 1, 5, 9, etc. 

For example if v»0, then n must be an even number to get resonance, i.e. 

n-0, 2, 4, etc., which yields modes L°, L?, L?, etc. On the other hand if 

n-0 then only every fourth value of v can appear, i.e., v-0, 4, 8, etc., 

corresponding to the L°, L , L , etc., modes. Table C-I lists values of 

n and v for b through 6 and the corresponding modes L. . 

If the resonator was adjusted to resonate the second lowest loss mode, 

i.e., the L mode, then since n-0, and v»l Eq. C-5 would become 

kD - 2 (J) - m« 
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b n v L n 

1 0 0 L° o 

2 0 1 L* o 

0 2 L* 
o 

3 

i o LJ 

0 3 L* o 
4 

1 1 L\ 

0 4 L* o 

5 1 2 L* 

2 0 Lj 

0 5 L* o 

X 

2 

'1 

1 

Table C-I - Values of b, n, v and Lv 
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In this case kD - j must remain constant if other modes are to resonate simul- 

taneously with the L mode. Note also that the resonator length is now dif- 

ferent by */4 radians from the length required to resonate the fundamental or 

L mode. Now 
o 

kD - b (J) - at (C-8) 

requires that 

b - (2n+v+l) - 2, 6, 10, etc., 

thus v must always be odd and n can be any integer including zero. Therefore, 

as can be seen from Table C-I, the 

.1 .1 .5 .3  „ 
o* 2* o* 1'    * 

modes can resonate simultaneously for the same resonator length. 

To summarise, the confocal half resonator adjusted to resonate the 

fundamental or lowest loss mode (L ) will permit other modes to resonate 

simultaneously if 

b ■ 1, 5, 9, etc., 

which from Table C-I corresponds to the 

.o .2 -o .4 .o .8 
V Ll» 4» V V o* •tc*' 

modes. 

The confocal half resonator adjusted to resonate the next to the lowest 

loss mode (L ) will permit other modes to resonate simultaneously If 
o 

b ■ 2, 6, 10, etc., 

which from Table C-I corresponds to the 

I* » Lj, I«o, L-, etc., 
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modes. The resonator length for this latter condition differs froa the first 

by x/4 radians. 

This analysis can be extended to obtain resonance for next higher node 

2 
which according to Fig. 4-7 is the L «ode. Then 

kü - 3(|) - mx 

and       b ■ (2n+v+l) - 3, 7, 11, etc. 

which froa Table C-I corresponds to the 

.2 to .4 .6 
L , L-, L.» L , etc., 

■odes. The resonator length in this case differs froa the length for reso- 

nating the fundamental aode by 2(j) radians. This resonator spacing also 

permits the L. node to resonate which is the fourth aode to appear in a beaa 

waveguide. 

Finally if the fifth node, namely the L. aode, Is to resonate then 

kD - 4(J) - mir 

and       b - (2n+v+l) - 4, 8, 12, etc., 

which froa Table C-I corresponds to the 

13  17 
VVV V«tC" 

modes. The resonator length in this case differs from the length required 

o        x 
for resonating the fundamental L mode by 3(T) radians. 

An analysis similar to that made for the confocal half resonator can 

be made for the full confocal resonator. For the full resonator Eq. C-5 becomes 

2kD - <2n+v+l) 2 J - mx 
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or 

2kD - (2n+vfl) J - ■» (C-9) 

Thus the full resonator adjusted to resonate the L° low loss node vlll permit 

other nodes to resonate simultaneously If 

b - 1, 3, 5, 7, etc., 

which fron Table C-I corresponds to the 

V V Ll» Ll' V L2* •tc,t 

nodes. 

The full resonator adjusted to resonate the second or L node will permit 

other nodes to resonate simultaneously if 

b - 2, 4, 6, 8( etc., 

which, fron Table C-I corresponds to the 

L1 L1 L3 L1 L3 L5 «re L._, i*. , ui , i<2» **« t «_» esc., 

nodes. The resonator length for this latter condition differs fron the first 

by w/2 radians. The full confocal resonator has twice as many nodes resonant 

for a given length aa the confocal half resonator does. 

Thus, it requires only two different resonator lengths to resonate all 

possible modes when using the full confocal resonator. Four different reso- 

nator lengths are required to resonate all possible nodes when using the 

confocal half resonator. These resonance conditions are summarlred in Table C-2. 

The order of the bean nodes, arranged according to their diffraction loss, 

starting with the lowest loss node is fron Pig. 4-7, 

Lo' V V H*  Ll' Lr L2* 4» *tc* 

Of the modes listed above only the 
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Resonance Condition 

Half Resonator 

Adjusted for 

L node o 

L*aode o 

L2 «ode o 

LJ «ode 

Pull Resonator 

Adjusted for 

L°node o 

L1 node o 

b - (2&HM4) 

1.5,9.- 

2.6,10.- 

3.7.11.. 

♦ .».12.- 

1.3.5,7,. 

2,4,6,8,- 

L° L2 L° I* V V L2» V 

L1 L1 L5 L3 *V L2* V Ll* 

L2 L° 1* L6 V Li» Li» V 

Ll L3 L1 L7 V V L3* V 

L° L2 L° L2 V V 4» V 

L1 I* L3 L1 O» 4* V L2' 

TABLE C-2 

Resonance Conditions for 

Cocfocal Full and Half Resonators 
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aodaa hava a aaxlanai flald on eh« axis of tha raaonator. All tha othar »odes 

hava saro flald OB tha raaonator azla. 
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PART 2 

XI. CUTOFF-COUPLED MICROWAVE FILTERS 

Introduction 

The characteristics, advantages, and limitations of waveguide filters using 

sections of guide operating in the cutoff region t>a  coupling eleaents were de- 

termined. These filters consist of a dielectric filled section of waveguide, 

which forms the resonator, preceded and followed by short lengths of air filled 

waveguide operating in the evanescent node. Special means for coupling energy 

into and out of such filters may have to be provided depending upon the kind of 

system they are Intended to operate with. 

The cutoff-coupled dielectric resonator was found to have many characteris- 

tics In common with the usual metal walled resonator and thus it can be used to 

form a waveguide filter. The band pass configuration was used to investigate 

the characteristics and behavior of cutoff coupled microwave filters. The ex- 

pressions for the resonant frequency, Q and mid-band insertion loss were derived. 

These expressions were then used to design a typical band pass filter with a 

center frequency near 3 GHz. The model filter was constructed and measurements 

were made on it to verify the theoretical design. 

A. Characteristics of Waveguides 

A very brief review of some of the properties of waveguides appears de- 

sirable before details of the filter design are presented. The characteristics of 

guides operating in the propagating region are well known but some of the proper- 

ties of guides operating In the evanescent or cutoff mode are less well known. 

The TE mode will be the only propagating mode considered in the present 

study. Wave motion In the z-directlon will be assumed so that the z variation 

of the fields in the waveguide are expressed by e   where Y is the propagation 

constant in the guide. In general, 

Y ■ V(1T)2 * (^)2 "V <11"1) 
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and 

Jß    if (2J-) + (Si) < «A c ab      o 

or 
2        o 

Y - a     if (—) + (-T-) > u y c 
a    t>     o 

where 6 is the phase constant 

a is the attenuation constant 

u is the applied angular frequency 

e is the permittivity of the medium in the guide 

a and b are the usual cross-sectional dimensions of the wave- 

guide 

and      m and n are Integers including zero (note: m and n are not to 

be zero simultaneously). 

Now when Y " Jß. normal wave propagation in the guide takes place. 

When Y ■ <*• the waveguide is said to be cutoff and no wave propagation in 

thft usual sense can take place. Fields do exist within the cutoff section 

of waveguide but they are highly attenuated with distance in the z-directlon. 

The frequency at which Y becomes zero, i.e., the transition between propa- 

gation and no propagation, is called the cutoff frequency. 

The components of the field within a rectangular waveguide operating 

in the TE-Q mode can be written as follows: 

H - A cos (*x/a) e^6z 
z 

Hx - jß(a/») A sin (wx/a) e"
Jß2 Ul-2) 

B - - (»/ßVyc ZH - - ju(a/*)fpTz A sin (*x/a) e'i6z 

E - E - H «0 
x   z   y 

where A is an amplitude constant 

and Z «yw/e is the intrinsic impedance of the medium (wave impedance 

for unbounded medium). 
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When the waveguide is non-propagating or cutoff the field components 

are the same as above except jB Is replaced by a. 

Thus, 

H ■ A cos (wx/a) e~ z 

H - a (a/*) A sin (irx/a) e ° 

Ey - -J (u/a) JUT ZHx —jw(a/Tr)^uTzA sin (irx/a) e"
aX 

E - E - H - 0 
x   s   y 

1. Reflection and Transmission Coefficients at a 

Junction of Propagating and Cutoff Waveguide 

Insight into the properties of the fields in a cutoff section of wave- 

guide nay be obtained by investigating the behavior of the fields of a pro- 

pagating wave in a dielectric-fiJled guide when the wave encounters an 

abrupt transition to a cutoff section of waveguide. This problem will 

help to formulate or establish a useful transmission line analogy of a 

cutoff waveguide. 

In Fig. ll-l are shown the various transverse components of the fields 

Involved on both sides of the junction for a T£ mode in the propagating 

waveguide section. Now the tangential components of the E field must be 

equal on both sides of the junction between the two sections of waveguide 

and hence the relation between the incident E., the reflected E and the 

transmitted E fields is determined. The tangential compoents of the H 

field are similarly related. 
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Using Eqs. 11-2 and 11-3, the E components at z-0 are equated as folio »ws 

"jWVVoJuo/eoAi ■*»<«/■)  - Jü»^Ü0Tj/u0/c0Ar sin (irx/a) 

- - J« yuT^/e    Afc sin (irx/a) 

or 

Ai + Ar " At (11"4) 

Similarly the relation between the H components is obtained from the H 

component in Eqs. 11-2 and 11-3 as follows, 

-jß(a/ir) A± sin  (wx/a) - jB(a/*) Ay sin (irx/a) - a (a/w) Afc sin (-rx/a) 

or 

JßAj - jßAr - oAfc (11-5) 

using Eqs. 11-4 and 11-5 the reflection coefficient is 

0ß - Ar/At - (J8-a)/(jß+o) (11-6) 

and the transmission coefficient is 

Ta " At/Ai * J28'<a"W <U"7> 
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Now for the case in which the fields exist in the cutoff section and 

emerge into a propagating section i.e., moving from right to left in Fig. 1-11 

Eqs. 11-4 and 11-5 become 

A1 + Ar - At (11-8) 

oA4 - oAr - jßAt 

and the reflection coefficient is 

(11-9) 

Pa - A^Aj -(o-Jß)/(or+jß) (11-10) 

and the transmission coefficient is 

Tß - At/At - 2o/(a-Jß) (11-11) 

2. Transmission Line Analogy of Propagating 

and Cutoff Waveguides 

a. Wave Impedance 

In the case of the two-wire and coaxial transmission line the power 

carried by the line is usually associated with a voltage and a current. 

In a waveguide, on the other hand, the idea of a voltage and a current 

in the usual circuit sense is almost meaningless, and the power must be 

associated with the fields inside the guide. However, for the purpose of 

establishing a limited but very useful analogy between a waveguide and an 

ordinary transmission line, a voltage and current related to the fields in 

the guide can be defined. The definitions used here are not the only ones 

that could have been used. 
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The equivalent voltage associated with the TF..ß mode in a rectangular 

waveguide is here defined as some constant tines the peak electric field in 

the center of an infinitely long guide. 

V - k E (11-12) 
oy 

Similarly the equivalent current is defined as being proportional to the 

peak magnetic field at the center of the waveguide. 

1 - - k H (11-13) 
ox 

Now the ratio of the transverse components of the fields in a waveguide has 

the dimensions of an impedance. Thus from Eq.11-2, 

-E /Hx - (w/ß) )füt   ^Ü7e - wu/ß 

The ratio of V to I from Eos. 11-12 and 11-13 is 

V/I * " Eoy/Hox " uw/ß 

Now the ratio of V/I for an infinitely long transmission line is called the 

characteristic Impedance. The analogous impedance in a waveguide Is called 

the wave impedance, thus 

ZTE - wp/ß (11-14) 

When this impedance ratio is determined for a waveguide operating below 

cutoff Z__ using    Eq.   11-3        becomes 

ZTE - j(<o/a)/77 {7/1 - jwu/a (11-15) 
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Thus the wave impedance for a waveguide operating in the cutoff region 

is a reactance. The wave impedance changes from the resistive value given by 

Eq. 11-14 to Che reactive value given by Eq. 11-15 at the cutoff frequency. 

The transmission line definitions for the reflection and transmission 

coefficients are as follows, 

p - Vref/Vinc " <VZ0>'<W 

and 

' - Vtran./Vinc " 2V<ZL+V 

If the case of a propagating TE.Q wave incidenc in a cutoff section of wave- 

guide is considered then Z. - jup/a and ZQ - uu/ß. 

Thus 

P ■ (J<i>u/a-wu/&)/(Juy/a-hi>u/B) 

P - (J6-a)/(jS4o) 

and 
T - (j2u»w/o)/(jwp/o+tüu/ß) 

T - J2ß/(a+jß) 

These expressions for p and x are identical with Eqs. 11-6 and 11-7 obtained from 

field theory and show the validity of the transmission line analogy in this 

instance. A result identical to Eqs. 11-10 and 11-11 is obtained when the above 

procedure is applied to the case of a cutoff section of guide terminated 

with a propagating section of waveguide. Thus a section of waveguide can 

be represented by a transmission line with a characteristic impedance equal 

to JOJU/Y, where Y IS equal to Jß if the guide is propagating a single mode 

and it is equal to a if the guide is operated in the cutoff region. The 

analogies verified above are shown in Fig. n-2. 
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b. Power Flow In Cutoff Waveguide 

The power flow into and out of a waveguide operating in the cutoff 

region can be determined with the aid of the transmission line analogy. 

Since the wave impedance and hence the input Impedance of an infinitely 

long section of waveguide in the cutoff region is reactive i.e., 

Z  - juu/a, no power is accepted by the cutoff waveguide. 

A finite length of waveguide operated in the cutoff region and ter- 

minated in a general load characterized by an impedance Z has an Input 

impedance given by the usual transmission line equation 

Zin " zo<1+pe~2Yd)/(1_pe~2Yd) (11~l6) 

where d is length of waveguide section 

Z~ IS the characteristic impedance or in the present case the 

wave Impedance of the waveguide 

Y is the propagation constant 

and   p is the reflection coefficient of the load. 

Now for a waveguide beyond cutoff 

ZL-(J»u/a) _2od 
1 + Z.+(JBw/o) ' 

Z. - Jot      L        (11-17) 
in    a      Z^jwu/a) _2ad 

1  ZL+(J«g/a) • 

In general the input impedance given by Eq. 11-17 will have both a real and 

reactive component. The real part of this input impedance will account 

for some power entering the input part of the cutoff section of waveguide. 

It r,»peats that there la no reason why a cutoff section of waveguide 

canaoc be considered lossless end hence the output power should be eoual 

to the input sower. On the other hand the fields in a cmtoff section of 

guide are attenuated by the factor e   nod fcerce It appears at first *lez<e 



that the input power will be reduced by the factor e    by the time it 

reaches tue output port. The best way to settle this apparent contradiction 

is to calculate and compare the input and output power associated with a 

section of waveguide operating in the cutoff region. 

The power at any point on a transmission line can be determined from 

the expression 

P-|VI* (11.18) 

where V and I are peak values of the total voltage and total current 

When Eq. 11-18 is applied to a section to waveguide viewed as a four terminal 

network the input and output powers are (see Fig. 11-2). 

* 

Pin " I  (V10 + Vii> (I10 + Xli> (11-19) 

Pout " 2 (V20 + V2i> (I20 + I2i) Ul-20) 

where V and I are the equivalent voltages and currents defined 

previously in Eqs. 11-12 and 11-13. 

Subscripts 1 and 2 refer to the input and output ports respectively 

and i and Ü refer to the incoming and outgoing voltages and currents 

Furthermore in transmission lice analysis the ratio of the incident voltage 

to tue incident current is the characteristic Impedance Z_, and this same 

ratio for the reflected components of voltage and current is -Z-. Thus 

since the wave impedance of a cutoff section of guide it reactive Eq». 11-19 

and H-20 become. 

* 
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Now expanding the expression for P. and P   and keeping track of 

the real (RE) and imaginary (IM) components in Eqa. 11-21 and 11-22 

1      7 7 7 0 
P  ■ •=■=— H(V   + v   - v   - v  ) 
in  2X lJV lilM T vliR5  V10RE   10IM; 

o 

(11-23) 

+ (2V10REVliIM " 2V101MVliRE)] 

P    * ~=— f 1 (V     + V     - V     - V    ^ 
out  2X lJV 20RE   20IM   2iRE   2iIM; o 

(11-24) 

+ (2V2iRE V20IM " 2V2iIM V20RE)J 

Equations 11-23 and 11-24 have both real and imaginary parts. The real parts 

account for real input and output powers. Furthermore since the input 

quantities are related to the output quantities by 

V10 * V2i e"°L «* Vli - V20 e+OL 

the real part of Eq. 11-23 can be transformed to 

TNRE m (7V V    -7V V    1 
AT OUTPUT  2X  v 2iRE 20IM C  2iIM 20RE* 

o 

However this Is the saae as the real power at the output given by Eq.  11-24 

Thus power is conserved  in the cutoff section of waveguide. 

B.    CMfgff-Cg-jpled Dielectric geggsaggr 

1.    Fwnc—eotal Coocepts 

Aa elect rn—cee tic resoaator Is formed by p lac la« short circuits at 

both carts Ai a sectloa of traavaatlesloa lie«.    Tk* trcasatissloa Use car 'r 
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a Cwo-wire line, a coaxial line or a section of waveguide.  The short cir- 

cuits at each end (assumed lossless) have a reflection coefficient of unity 

and hence reflect all the energy incident on them. The standing wave pattern 

set up along the length of the line must have a zero field at each end plate. 

When these boundary conditions are met, the short circuited transmission line 

or waveguide section is said to be in resonance.  A transmission line section 

is resonant at certain discrete frequencies which correspond to the number of 

half wavelengths contained in the standing wave pattern.  Thus the voltage 

or field at the mid-point between the two reflecting end plates is always 

either a maximum or zero.  A line section terminated in an open circuit at 

each end will also form a resonantor since an infinite impedance represent- 

ing the open circuit also yields a reflection coefficient of unity. The 

characteristics ascribed to the short circuited resonator above apply also 

to the open circuited resonator. 

When a dielectric filled section of waveguide is terminated in an in- 

finitely long cutoff section of waveguide, the magnitude of the reflection 

coefficient at the junction viewed from the propagating side is 

{frffb lOgl - l|B~+«7Vß2+a2 

Thus it is possible to set up a resonator using a dielectric-filled propa- 

gating section of waveguide terminated at each end by Infinitely long cutoff 

sections of waveguide. 

In a practical filter energy trust be coupled Into and ovt of the reso- 

nator. In a actal walled resonator this coupling cf energy i« usually done 

by scans of seal! tales or irises In the resonator end plates. In the cut- 

off-cox-p.ee «{electric resonator energy can be fed into and reiun.ee fro* 



the filter by using finite lengths of cutoff coupling sections.  The amount 

or degree of coupling, measured in terms of the fraction of the incident 

wave entering the dielectric resonator, can be controlled by the choice of 

the length of the cutoff coupling section used. A quantitlve measure of 

the coupling can be obtained by using a coupling factor K defined by 

-aL 
K " Te (11-25) 

where T is the transmission coefficient given by Eo. 11-7 or 11-11, 

a is the attenuation per unit length of the cutoff waveguide 

section 

and  L is the length of the cutoff coupling section 

A simple band-pass filter made up of waveguide sections all having the 

same size cross-section would consist of a dielectric-filled resonator sec- 

tion which has air filled sections at each end which serve as the cutoff 

coupling sections.  In order that energy can be fed to and removed from 

the filter, some means of coupling to the cutoff sections must be provided. 

One such means would be to use dielectric-filled propagating sections of 

waveguide to couple into and out of the cutoff coupling sections. Such an 

arrangement along with the cutoff-coupled band pass filter is shown In Vig. 11-3 

Probe antennas extending Into the cutoff coupling waveguide sections could 

also be vsed to covple energy Into and out of the filter system. 

Bavins described the fundamental Ideas upon which the cutoff-coupled 

dielectric resonator band pass filter Is based, the remainder of this 

section will be devoted to deriving ewantltatlve design eeutlons. *eter- 

almfag Che reesnance conditions, tke relatives for tfcr varlens 0 factors 

::*. 
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of a dielectric resonator and the insertion loss at resonance comprises 

the important design information that will be developed. 

2.    Resonance of Dielectric Filled Waveguide 

Bounded by Cutoff Sections 

The resonant frequencies of a completely enclosed metal walled resonator 

are usually obtained by solving Maxwell's equations subject to the proper 

boundary conditions. A dielectric-filled waveguide section with infinitely 

long «utoff coupling sections at each end corresponds to the completely en- 

closed metal resonator. When small coupling holes are used in the metal 

walled resonator or when relatively long but finite length cutoff sections 

are used with the dielectric resonator, the resonant frequencies will be 

changed only slightly in most cases. 

The dielectric filled resonator to be analyzed is shown in Fig. 11-4 

Three different approaches for determining the resonant frequencies will 

be discussed briefly. 

a. Field Approach 

The electric field of the TF node  in the waveguide resonator which 

will be assumed to be in the y-direction, will be made up of two traveling 

waves propagating in opposite directions. Now E. is shown traveling in 

the -x direction and E in the +z direction in Fig. 11-3. Thus 

E - Ex sin(mwx/a) cos(n*y/b)e
Jßx+E2 sin(mirx/a) cos(n»y/b)e"

;jBX   (11-26) 
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The boundary conditions at z - 0 and z ■ D require that the total E field 

take on values determined by the reflection coefficients at the junction 

between the resonator and the cutoff waveguide section. The only variable 

in the equation for E is ß and its value, which is dependent on frequency, 

will make it possible to meet the boundary conditions. The frequencies for 

which the boundary conditions are satisfied are the resonant frequencies of 

the dielectric-filled resonator. 

At z - 0 

E.    o - E1sin(mTTx/a)cos(nity/b)(l+[jß-aI/[jß+a]) (11-27) 

where E2 - Ex(jß-a)/(JB+a) 

since from Eq.  6 

Pß - (jß-a)/(jß+o) 

Mow at z - D 

and E.  is viewed as the Incident wave at the z ■ o interface. 

ian _4 gn 
Ei     .   • L1sin(mnx/a)cos(niry/b)eJ    +E_sin(mirx/a)cos(niry/b)e 
y|Z"D        X Z (11-28) 

sin (mirx/a)cos (niry/b) (E1eJ BD+E2e"j ßD) 

where in this case E. must be treated as the incident 

wave 
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Hence, 

E.e^60      E.cosßD+jE.sinßD      .. 
. m    ■*•    „ j l „ ISIS. 
'ß  E e-j6D E2coBBD-JE2Bin$D  jß-ft» 

After some algebraic manipulation the following is obtained 

tan ßD - -|2fi-. (11-29) 
ß'-a 

or 
2aB tan ßD -l- 

o2-ß2 

Taking the arctangent of both sides 

ßD + arctan ( 2og>) - arctan (0) - pw (11-30) 

where p is an integer including zero 

Both Eqs. 11-29 and 11-30 are transcendental and ß which determines the resonant 

frequencies of the dielectric resonator, must be found by trial. Thus no 

equation which expresses the resonant frequency f explicitly can be written. 

An f is first assumed and a and ß determined from Eq. 11-1. Tnese values must 

in turn satisfy Eq. 11-30 for a given D. 

b. Phase Shift Approach 

As mentioned earlier, at resonance the electric field E or the volt ige 

V is either a maximum or aero at the center or midpoint along the length of 

the resonator. This behavior, which is the basis of the phase shift method 

for determining the resonance condition, is due to the assumed identical 

boundaries at each end of the resonator. Furthermore, the reflection at 

each end must be lossless and the resonator Itself must be lossless if the 

standing wave resulting from the interference of oppositely traveling waves 

is to go to zero Instead of to a minimum at the midpoint of the resonator. 
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To have either a maximum or zero of the standing wave pattern at the 

midpoint of the resonator requires that the total phase shift the traveling 

wave experiences in going from the center to one end of the resonator and 

then back to the center again must be pir. Now p, called the mode number, 

must be either zero or a positive integer. 

Applying the criterion that the phase shift must equal pit for res- 

onance, to the cutoff-coupled dielectric resonator, there results, (see 

Fig. li-2a, in which L is length from the center to one end of the resonator 

and L - (1/2)D where D is total resonator length). 

V2i " pV20 

V  -V e'JßL v20   lie 

V  -V e-JBL v10  v2ie 

Thus V10 - pV20e-
JßL - pVue'2jßL 

°r !±0 - oe-
23ßL- e^ßD v   p 

11 

However, from Eq. 11-6 

p  jö+a 

which can be written, assuming perfect reflection 

Jjgza a^il m  -a2+,1qp+ß2 . lej* 
°  JW.-1B   02+ß2 
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where 4 is the phase shift produced on reflection 

* - «et«* |£ - arctan -f^ " " «"tan -f^ 
B -a a -B «2-e2 

Thus 

^ - pe"^D- eJ«e-
JßD - e-

J(ßD + arctan "TV 
Vli o -B 

But for resonance the total phase shift must be equal to pit. Thus 

BD + arctan (-f^) - p* 
a -6* 

which is identical to Eq. 11-30 obtained by the field approach. 

When Eq. 11-30 is solved for D, recalling that 

•-¥ 
D - 27 (P»"«rctan -f2^) 

o -P," 

D - ^ " £ arctan -^ (11-31) 
o -B* 

or 

D-f+. 

where -A/4 < s < + r 

Thus the length D of the cutoff-coupled dielectric resonator is equal to p 

half wavelengths plus or minus a length |s| which la determined by the phase 

shift of the reflection from the junction between the dielectric filled section 

and the cutoff section of waveguide. 
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The standing wave patterns in the dielectric filled section of a cutoff- 

coupled dielectric resonator for p - 0, 1 and 2 are shown in Fig. 11-5. These 

standing wave patterns have either a maximum or zero field at the resonator 

midpoint. The correct standing wave pattern of the two (one solid and the 

other dotted) shown for each value yf  p is determined by calculating the 

value of the field or the reflection coefficient at the ends of the resonator. 

The magnitude of field strength at the ends of the resonator is, with the aid 

of Eq. 11-6 given hy 

E - 11 + 1 / arctan -^ | (11-33) 
i g V 

An expression for the magnitude of ehe field strength versus distance in the 

dielectric-filled resonator may be obtained by generalising Eq. 11-33 as follows 

E . | e~Jß« + eJß« eJß «etan (-f^j) , ^       (u_^} 

Thus specifying p alone is not sufficient for sketching the standing wave 

pattern inside this resonator. The value of a and ß must be known as indi- 

cated in Eq. 11-34. 

c. ABCD Matrix Method 

Another method for deriving the condition for resonance expressed by 

Eq. 11-29 Involves the use of the network chain matrix. This matrix is also 

called the ABCD matrix and is discussed in books on network theory. 
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The first step in this method for determining the resonance condition 

is to use the ABCD matrix to find the input impedance Z of a length of pro- 

pagating wave guide when it is terminated by an infinitely long cutoff section. 

The impedance of this terminating section is the wave Impedance of the cutoff 

waveguide c 2 - .jwu/a. Next it must be proved that the quarter wave trans- 

2 
former relation Z - Z.Z applies in this case in order to show that a maxi- 

O    XL* 

mum or minimum in the standing wave pattern occurs at the midpoint of the 

resonator. Finally the equation must be reduced tc the form of Eq. 11-29. 

This method has been carried out and does yield the desired result. 

The details of the procedure are net presented here, first because it 

involves a great deal of algebraic manipulation, and second, the method 

makes use of the fact that the total phase shift experienced by a wave going 

from the center of the resonator to the cutoff section and back to the center 

ia an integral multiple of 180*. This latter condition however is the basis 

for the phase shift method just discussed and therefore the matrix method 

is not an entirely different method. 

The scatter-chain matrix could be used instead of the ABCD matrix to 

arrive at the desired results. However, the equations become even more in- 

volved than for the ABCD matrix because in this case two matrices instead 

of one are necessary at the junction between the propagating and cutoff 

sections. 

C. Cutoff-Coupled Dielectric Resonator Band Paas Filter 

1.  Resonator Quality Factors 

The relations necessary to design a cutoff-coupled dielectric resonator 

to be used as a two port band pass filter are to be derived. The actual filter 
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under consideration using finite lengths of cutoff coupling sections and 

connected between two propagating transmission lines is shown in Fig. 11-3. 

The quantitative relations sought can be obtained with the aid of one 

of the well developed equivalent circuit techniques used for ordinary metal- 

walled microwave resonator design. The equivalence of the lumped parameter 

circuit used in this technique is in the similarity of the frequency response 

near resonance of the circuit to that of a microwave resonator. 

The lumped parameter parallel R-L-C circuit representing a resonator 

is shown in Fig. 11-6(a). The ideal transformers in the circuit represent the 

coupling of the resonator to the source and load. The source and its resis- 

tance and the load resistance are also shown in Fig. ll-6(a). The circuit is 

said to be in resonance when the inductive susceptance cancels the capacitlve 

suaceptance leaving just a conductance. This resonance condition, for which 

the input voltage and current ere in phase, occurs at a frequency called the 

resonant frequency f . The response or relative output power versus frequency 

near resonance is shown in Fig. 11-6(b). The reference level of 0 db shown in 

Fig. ll-6(b) is for the resonator removed from the circuit and the curve thus 

displays the insertion loss of the resonator versus frequency. 

The selectivity or resonance curve shown in Fig. 11-6(b) is the same as 

that obtained for a microwave resonator near the resonant frequency, and hence 

the definition of the quality factor or Q of the lumped constant equivalent 

circuit applies also to microwave resonators. The general definition of the 

Q is 

W 
Q - «ü p* (11-35) 
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where Q is a ratio or dlmensionless quantity 

W is the total energy stored in the resonator 

at resonance 

and P, is the tine average power loss or the time 

rate of dissipation of energy due to 

losses 

Various Q's can be defined and will differ fron each other depending 

on how the time average power loss is determined. The loaded quality factor 

QL is defined by Eq. 11-35 but the time average power loss includes all the 

energy dissipating elements shown in Fig. ll-6(a), i.e., the load R., the resonator 

itself R and the source R . The unloaded quality factor Q is also defined by 

Eq. 11-35 but for this case the only energy dissipating element considered is R£ 

and hence Qu does not include energy lost in the circuit external to the reson- 

ator. Finally two external quality factors are each also defined by Eq. 11-35 

except that for Qgl only the source resistance R is used in determining the 

power loss whereas for Q£2 only the load resistance R. is used. If Qu« Q£1 

36 
and QE2 of a resonator are known then Q, can be found from 

QI- " JL + _L + _L_ (11-36) 
Qu  QE1  «E2 

Also the equation for the selectivity curve of Fig. ll-6(b) in terms of the 

Q's is 

T  _-i i  (11-37) 

o  9E19E2 {l-KJT
Z[2(»-u )/u )2) 
w        XT 

36. Jerome L. Altman, Microwave Circuits. D. Van Nostrand Co., New York, 1964 
p. 219-228, 239. 
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where T is the power in the load R, with resonator 

in the circuit 

and P is power in the load K, with resonator re- 

moved from the circuit 

The value of Q. can be determined from the selectivity curve with the aid of 

the following equation, 

«L ■ s£ <11-38' 

where A», is the 3db bandwidth. *»l 

2. Calculation of O's for Cutoff-Coupled 

Dielectric Resonator 

The peak energy stored in a cavity is determined from a knowledge of 

the field distribution wfthin the resonator. The general expression for the 

energy stored is 

For a TE. n     »ode 
l»UiP 

Hs " 2 C / Ey (x»y»,) dV (11'39) 

where E is the peak value of the electric field 

in the resonator 

Ey <x,y.*> - (2EX tin xx/a)f(x) (11-40) 

where f(x) is the variation of E with x as shown 
y 

in Pig. 11-5. 

37. A. B. Bronwell and R. E. Beam, Theory and Application of Microwaves. 
McGrsw-Hill Book Co., New York, 1947, p. 372. 
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Thus 
D 

W - y € b 4 Ej2 (a/2) /  f2(s) dz (11-41) 
s 

JE-O 

When the specific field distribution in the z direction is known the integral 

can be evaluated. 

a. Unloaded Q 

The unloaded Q of a dielectric filled cavity can be calculated when the 

energy dissipated within the resonator is known- One part of the energy lost 

is due to the energy dissipated in the dielectric material filling the cavity 

and the other part is due to energy dissipated in the metal walls. These 

losses within the resonator can be considered separately so that a Q based on 

dielectric losses only and a Q based on conduction losses only can be calculated 

separately. These separate Q's can then be used to find the unloaded Q . It 

will be aasumed that no energy Is lost in the cutoff coupling sections. 

The Qspv accounting for dielectric losses only can be calculated once 

the time average power lost in the dielectric is determined, since W has al- 

ia 
ready been determined by Eq. 11-39. The time average power loss Is 

P(D) "2 "' e" Ey dV + 2 ° /Ey dV 

where e" is the imaginary part of the permitivity 

which accounts for the polarisation 

damping loss 

and o is the conductivity of the dielectric 

Thus the Q from Eq. 11-35 is 

38. Robert Plonsey and Robert E. Collln, Principles and Applications of Electro- 
magnetic Fields. McGraw-Hill Book Co., New York, 1961, p. 316. 
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±e/~2 ,  <. -   E" dV 2      y    y 
dl      — '   ■   ■ 

U<D>       '   i.r/e"EjdV+i./EjdV 
V      3 V  7 

u e 
r 

*u(D)   wre
,,+ o 

But the loss tangent of a dielectric is defined as 

tan a . ÄÜ»£ 
L   we 

Thus 

V %(D)  tan 6L 

~ 39 
The Q associated with the cavity wall losses is best obtained from 

/ H2 dV 
n 2 v  

^<w> " *   T^~Z (11_43) 
J Ht dA 
A 

where H is the magnetic field tangent to the 4 

metal walls of the cavity 

and  6 is the skin depth 

The Integral in the numerator is a measure of the energy stored and the 

lntegril in the denominator is a measure of the energy lost in the cavity. 

Now for the cutoff-coupled resonator 

E    2 BE, 
H - —^  sin (wx/a)f (*) 
x  wp/ß   up 

39. U. A. Atwater, Introduction to Microwave Theory. McGraw-Hill Book Co., 
New York, 1962, p. 145. 
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^rith E given by Eq. 11-40. Note also that the Hx and H^ fields have their 

maximums a quarter wavelength apart along the z coordinate. Thus with the 

aid of Eq. 11-2, Hz can be written as 

H 

The integrals in Eq. 11-43 for Qu/W\ are difficult to evaluate when the above 

expressions for H and H are used, 

A good approximate value for Q / \ can be obtained by solving Eq. 11-43 

for a resonator exactly one half wavelength long. In such a case f (x) and 

f(z-A/4) are sine and cosine functions and 1) - p» thus the Integrals are 

40 
easily evaluated to give 

r ab ± [aV(X/2) }^*fvo 
u(w)TE.   . - -~ r r (11-44) 

x,u»x  a-*(A/2) +a(A/2)J+2 (X/2)Jb 

The Q,» of a resonator is approximately proportional to the ratio of its 

voluae to metal suface area. For the cutoff-coupled dielect. '.c resonator 

this ratio is essentially constant regardless of its length D, since the 

voluae is abb and its metal surface area is D(2a+2b). Thus the value of 

Q / \ should not differ greatly from that given by Eq. 11-44. 

The actual unloaded Q of the cutoff-coupled dielectric resonator will 

be 

^♦^L 
(11-45) 

*W)  Qu(w) 

40. Atwater, p. 14j. 
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However as will be shown later Q , .       will be very much larger than 

^u(l)) and hence the approximate value of Q , * Riven by Eq. 11-44 will be 

sufficiently accurate to calculate Q using Eq. 11-45. 

b. External 0 

When the external Q is calculated the time average power loss in the 

load at either the input or output port of the resonator must be known. In 

order to calculate this power loss it will be convenient to assume matched 

conditions at the input and output of the resonator. In general matched 

conditions can be met in practice especially now that isolators are available. 

Thus the power flowing along a matched waveguide (perhaps in this case a 

dielectric filled waveguide to make it propagating) is given by 

Then 

or 

PT - ^ Re / / Ey Hx dx dy 

where for the TE.Q mode 

E - E4 sin (wx/a) 

H - K4 sin (wx/a) 

and E, and H, are amplitude factors in the input 

or output waveguides 

b  a l EA 
PT - J  /  j E4 sin (irx/a) ~ sin (wx/a) dx dy 

0   0 o 

1 E4 ab P - P   - - —  (11-46) rT  rLOAD  2  R V    ' 

where R ■ - E./H, ■ up /B is the wave Impedance 
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It would be very desirable to have Eq. 11-46 expressed in terms of the 

field amplitude E in the resonator, since then Q£ could be calculated using 

Eq. 11-35 because Ws is already known in terms of Ej. Now from Fi«. 11-3 it can be 

seen that a portion of E is transmitted Into the cutoff-section, attenuated 

in passing through the cutoff-section and finally transmitted into the propa- 

gating output waveguide as E,. Thus 

h m  El Ta Tß e 

where T and T0 are given by Eqs.11-7 and 11-11 O       D 

respectively 

and L is the length of the cutoff-section 

The expression for T  IS for an infinitely long cutoff-section; however, in 

a practical filter even though this section is not infinitely long, it is 

long enough so that any reflected wave from the output would be sufficiently 

attenuated in traveling back to the vesonator that it can be neglected. 

Thus 

v    - F      12g    2tt    „-a1- c4      *1 o+jß ofjß e 

or 

|E  l  _4S§£  E 

'*'       a2
+ß

2      l 

and 

P . P    . I ab(16a2ß2e"2aL) 2 
T   "»  4 R («V)2     X 

o 

Now R is equal to up /ß and assuming the input and output propagating wave- 

guide sections are filled with the same dielectric as the renonaeor then the 

ß's are the same and 
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p    . *«baVe-2ttL c2 

™>      »»  (aV)2 h (11-47) 

Then QE1 or Qn  can be calculated using Eqs. n-41 and n-A7 ln Eq. u_35. 

4l ' QE2 " 
Mr

2ereo(a2-l-62)2ftJ    f2(r) dt 
, 2.3 -2aL 
4a B e 

(11-48) 

Finally QL can now be calculated with the aid of Eq. u-36 since Q ., 0_, and 

Q are known, 
^u 

3. Inaertion Loaa at Resonance 

the fraction of the incident power P transmitted by a resonator at 

resonance ia from Eq. H-37 

P 
o 

4Q, 

QE1QE2 
(11-49) 

' res 

Now QL can be determined from Eq.   U-36 „^ 8lnce in „08t CMe8 ^ . ^ m ^ 

Qx " L     J, + 7L-tQE/V2] 
(11-50) 

Hence 

iVV2,< 

res 

or the inverse 

o 
T 

[QE/Qu+2]' 

■res 

(11-51) 
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Thus the insertion loss P /T|   Increases as Q£ Increases and approaches 

infinity as Q^. approaches infinity. This means very little energy is coupled 

into and out of the resonator. On the other hand as Q_ approaches zero the 

insertion loss also approaches zero. But since Q. is never larger than Q_ 

the design of symmetrical filters of this type results in a compromise between 

low insertion loss and high Q.. 

D. Cascaded Resonator 

It is well known that when two identical tuned circuits or resonators 

are connected in series or cascade, the overall selectivity will be increased 

over that of one tuned circuit alone. Another way of stating this is that 

the bandwidth is reduced or that the Q of the combination is higher than the 

Q of a single unit. 

In practice two kinds or types of cascaded resonators or multistage 

filters are recognized. The division is based on the type of coupling used 

to connect the resonators together. The two types are direct coupled filters, 

in which the output of one resonator is coupled directly into the input of the 

next resonator and quarter-wave coupled filters, in which a quarter-wave trans- 

mission line .'.s used to couple the resonators together. Thus far only the case 

corresponding to the direct coupled filter has been tried with cascaded cutoff- 

coupled resonators. 

In direct coupled metal-walled resonators one can show that for identical 

resonators the resonant frequency is the same as it was for just one of the 

resonators, regardless of how tight the coupling is. The reason for this can 

be seen from the sketches of the standing wave patterns shown in Fig. 11-7.  In 

Fig. ll-T(a) the pattern for a single r*aonator at resonance is shown.  In Fig. ll-7(b 

is shown the standing wave rattern for two identical resonators in cascade and 

direct coupled. Note that this pattern is always the same, no matter how 
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tightly coupled the resonators are. In the extreme case, when the wall 

dividing the resonators is removed, th% combination can still resonate 

at the original frequency since the new single resonator would still con- 

tain an integral number of the original half-wavelengths. 

The standing wave pattern for a single resonator cutoff-coupled filter 

is shown in Fig, 11-7 (c). Note that because of the reactive but finite impedance 

at each end of the dielectric filled resonator, the standing wave pattern does 

net go to zero at the ends. The case corresponding to direct coupling between 

two cutoff-coupled dielectric resonators Is shown in Fig. 11-7(d). If in this 

latter case, it was desired to obtain maximum coupling by reducing the length 

L* of the cutoff-coupling section to zero, a single resonator of length 2D 

would be formed. However for the original applied frequency there can not 

be a zero or maximum field at the midpoint of the resonator as required for 

resonance. In order to obtain a zero field at the midpoint of the new larger 

single resonator, and hence be in resonance, would require that the applied 

frequency be increased. This would correspond to the case of p - 1 in 

Eq> 11-30. Thus the new single resonator cannot resonate at the same frequency 

as the two lossly coupled resonators do. 

Some characteristics of cascaded cutoff-coupled dielectric resonators 

differ somewhat from those of metal-walled resonators. As with metal walled 

resonators the cutoff-coupled filter will have a Q curve or selectivity curve 

as shown in Fig. 11-6 with an Increased value of Q. and in general an increased 

insertion loss at resonance compared with a single resonator filter. However, 

the resonant frequency of the cascaded cutoff-coupled filter will in general 

be changed from that of a single resonator filter. As the length of the 

cutoff-section between the dielectric filled resonator approaches zero, f 

must either approach the resonant frequency of a single resonator of length 
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2D or it must increase above that Tor a single resonator in order to obtain a 

zero field at the midpoint of a resonator of length 2D. As the length of 

the cutoff section between tWe dielectric filled resonators is increased, 

the resonant frequency approaches that of the individual resonators making 

up the cascade. Quantitative formulation of this behavior has not yet been 

attempted. 

In practice it is virtually impossible to fabricate two identical 

resonators that can be used in cascade. The resonator with the lower res- 

onant frequency could be shortened slightly in an attempt to make it coincide 

with the second resonator. A better way however is to make use of a small 

perturbation such as a screw inserted into the volume of the resonator where 

the field amplitude is large. Such a perturbation can be shown to be equiva- 

lent to a capacitance shunting the resonator and hsnce results in increasing 

the C in the equivalent circuit of Fig. 11-6. Thus the resonant frequency can 

be shifted an amount determined by the depth of penetration of the screw into 

the dielectric filled resonator. The details of construction of such a tunable 

resonator as well as the fabrication and experimental measurements made on 

cutoff-coupling dielectric resonators will be given next. 

E. Fabrication and Measurement Technique 

1. Construction of the Filters 

Rectangular waveguide normally used at X-band was chosen as the most 

suitable for making up the experimental filters. This waveguide size (0.9 x 0.4 

inches) is cut-off for the intended operating frequency of 3.0 GHz but can be made 
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propagating by filling the guide with a high dielectric constant material. The 

normal cut-off frequency of air-filled X-band waveguide is 6.57 GHz but this cut- 

off frequency can be reduced to a value well below 3.0 GHz by filling the guide 

with a commercial dielectric called "Stycast Hi K", which has a dielectric con- 

41 
stant of 10.  This material is a hard white plastic that can be machined quite 

easily.  It is however somewhat brittle and hence is easily broken or chipped. 

The resonators were made by cutting a section of the X-band waveguide to the 

length required for a dielectric-filled section. Then a piece of the dielectric 

was machined and force-fitted inside the waveguide so that it filled the wave- 

guide as completely as possible. A number of pieces of waveguide (air-filled), 

cut to convenient lengths (such as 1", 1/2", 1/4", 1/8"), were made complete 

with flanges. These pieces formed the cutoff coupling sections. When these 

pieces were joined to both ends of the dielectric-filled section, a complete 

cutoff-coupled dielectric resonator resulted. A photograph of such a resonator 

is shown in Fig. 11-8. 

A possible drawback to this method of construction is that the dielectric 

material is force-fitted into the waveguide. It is generally impossible to Sieve 

the dielectric touching the waveguide In all places, and hence therc will always 

be a few small air spaces between the faces of the dielectric block and the wave- 

guide walls. Such small air spaces or minor flaws can introduce large susceptances 

into the guide. A technique suggested by Goodwin and Moss to eliminate air gaps 

42 
is to electroform with silver or copper onto the dielectric filling the guide. 

41. "Stycast Hi K", is manufactured by Emerson & (Turning, Inc. Canton, '^sachusetts. 

42. F. £. Goodwin and G. E. Moss, "Broad-Band Impedance Matching into Dielectric- 
Filled Waveguides," IEEE Transactions on Microwave Theory and Techniques, 
Vol. MTT-11, No. 1, January 1963, p. 37. 
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A resonator whose resonant frequency was adjustable was also constructed. 

A resonator that has a standing wave pattern with a maximum field at the midpoint 

between the two end flanges was selected for this.  It was made tunable by dril- 

ling a hole at the standing wave pattern maximum 1/8" deep into the dielectric 

filling the resonator. A nut for a No. 8 screw was soldered on the top outside 

of the waveguide in order that the depth or penetration of the screw into the hole 

in the dielectric could be adjusted. This adjustable susceptance is equivalent 

to changing the effective length of the dielectric filling the resonator. A tun- 

able resonator is shown in the photograph of Fig. 11-9. 

2. Coupling into Dielectric-Filled Waveguide 

It appeared that a propagating dielectric-filled waveguide of the same cross- 

sectional size as the resonator would be desirable at both resonator ports to 

carry energy into and out of the filter. Furthermore, if the dielectric constant 

of the filled waveguide sections is the same as that of the resonator, then thr 

equation for Q„ would be simplified.  It was therefore decided to use X-band 

waveguide filled with Stycast Hi K dielectric material with an e «10 to couple 

into and out of the filters. A suitable means of coupling these dielectric- 

filled waveguides to the source and load must now be decided on. 

The 3 GHz or S-band source available was a 726B klystron and had a coaxial 

output. A suitable load which would also serve to measure the output power of 

the filter would be either a crystal or a thermistor. Both of these devices were 

available in coaxial form. Thus coupling to the dielectric-filled waveguides 

using regular X-band coax-to-waveguide junctions (with adjustable plungers for 

tuning) filled with dielectric was considered. However, when two of these di- 

electric-filled junctions were tried out by joining their flanges together and 

connecting one junction to the source and the other to a crystal by coaxial 
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cobles. It was observed that the crystal output current varied considerably 

with frequency. This variation might be due to several factors. First, the 

junctions were designed for use at X-band rather than at S-band. Secondly, the 

junction cannot be tuned with its metal plunger since the dielectric can extend 

only up to the adjustable plunger. Thus it appeared that the dielectric-filled 

junctions were not suitable for coupling from a coaxial cable to the dielectric- 

filled waveguide. 

An alternative means of coupling into the dielectric-filled waveguide is to 

go from a coaxial cable to an S-band (air-filled) waveguide using the conventional 

S-band junction, and then use a transition from the S-band waveguide to the di- 

electric-filled X-band waveguide. This waveguide transition might be either a 

straight line taper or a step taper. Because of ease of fabrication the straight 

taper section was used. 

This straight line transition consists of a tapered waveguide with a dielec- 

tric insert having a reverse taper. Such waveguide taper sections can be seen 

in the photograph of Fig. 11-10. Note that the waveguide walls in both E and 

H planes are tapered along straight lines from S-band size to X-band sire. Not 

observable In the photograph is the tapered dielectric insert which is inside 

each waveguide taper. The tapered dielectric piece begins as a point at the S<- 

band end of the transition and in the center of the cross-section of the wave- 

guide. As the metal waveguide walls taper down to X-band size, the dielectric 

insert tapers up along straight lines in both planes until it becomes X-band 

size at the same point that the metal waveguide walls become X-band sice. Thus 

a gradual transition Is made from air-filled S-band to dielectric-filled X-band 

waveguide. As long as the length of the tapered section is much greater than a 

wavelength, such a transition will transmit power with negligible reflections. 

The tapers constructed were 3" in length and used Stycast Hi K, which had 

a dielectric constant of 10, for the insert. To test the performance of these 

tapers, their X-band flanges were connected together and a 726B klystron was 

145. 



W 
2 w 

en 
< 
w 
S3 
w 

o 
TO 
w 
PÖ 

o 
z w 
o 
w 
« 
hi 

z 
2 

i 

& PQ 
i 

H 
5 

o 

S w 
H 
TO 

TO 

O 

I 

» 
Ü 

146 



used to feed power through a coaxial cable to the S-band waveguide. An S-band 

thermistor was used to monitor the output power. The output power was constant 

within +2 db from 2.90 GHz to 3.45 GHz. 

3.  Swept-Frequency Method 

The basic circuit used for the insertion loss versus frequency measurements 

made on the filters is shown in Fig. 11-10. A coaxial cable was connected from the 

output of a 726B klystron through an attenuator, an H-P 536 wavemeter, and a 

Sperry 04452 ferrlte isolator to an S-band (air-filled) waveguide. The purpose 

of the isolator was to ensure that the resonator saw a matched waveguide imped- 

ance at its input port, so that Eq. 11-48 for Q is valid.  A taper was used to 

feed the power from the S-band guide to the dielectric-filled X-band guide. 

From the X-band guide the power was fed into the input cutoff section, the di- 

electric-filled section, and the output cutoff section of the cutoff-coupled 

dielectric resonator. Finally, power was led from the resonator through another 

section of dielectric-filled X-band guide, and then through a taper to an S-band 

guide where a load served as a detector. 

In Fig. 11-10 the load is shown as a thermistor; however the photograph shows 

the point-by-point measuring set-up rather than the swept-frequency method.  In 

the swept-frequency method the thermistor was replaced by a crystal detector, the 

output of which was connected to one of the vertical inputs of a dual trace oscil- 

loscope. In addition a coaxial cable and crystal was connected from a second 

output of the klystron to the second vertical input of the oscilloscope, and a 

cable was connected from the sawtooth terminal of the oscilloscope to the modu- 

lation input terminal of the klystron power supply. Thus the frequency of the 

klystron was swept (modulated) and the direct output of the klystron and the out- 

put of the resonator were monitored on the oscilloscope as a function of frequency. 
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The swept-frequency method was used to obtain an approximate value of the 

resonant frequency, and the Insertion loss at resonance of the resonator.  In 

addition the svept-frequency method of measurement permitted a check for power 

transmitted by the resonator at frequencies other than those near resonance. 

In order to determine accurately the response of the filter, that is, Insertion 

loss versus frequency, a point-by-point method of measurement was used. 

*. The Point-by-Point Method 

The point-by-point method of measurement uses the circuit and equipment 

shown in Fig. 11-10. The output power was measured with an H-P S486A thermistor 

and associated U-P 431B power meter. The remainder of the equipment has already 

been described. The particular combination of thermistor and power meter used 

gave very accurate power readings. The accuracy is rated at +5Z of full scale 

and thus the power readings were usually accurate to within a few tenths of a 

decibel. 

The technique used to measure the insertion loss versus frequency was as 

follows. First, with the circuit identical to that shown In Fig. 11-10 (no modu- 

lation of the klystron), the frequency and output power were read and recofCid. 

The second step consisted of removing the entire filter from the circuit and 

joining together the two X-band flanges of the tapers. The new reading on the 

power meter was noted, and in addition the frequency was checked with the wave- 

mtter to make sure no frequency drift had occurred. Thus the insertion loss at 

a particular frequency was obtained by subtracting the two power readings ob- 

tained in manner just described. Other points on the Q curve were found by 

changing the klystron frequency and repeating the above procedure. 

The Insertion loss at resonance was found with a slight change in procedure. 

Near resonance the power output meter reading was observed while the repeller 
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voltage of the klystron was varied (and thereby varying the frequency). The 

frequencv for which the maximum power reading obtained determined resonance. 

The insertion loss at this frequency was then measured. 

F. Theoretical Design and Experimental Results 

1. Single Stage Filters 

a. Design 

The design of single stage euroff-coupled band pass filters can be 

accomplished by using the theory presented in the previous section. The 

waveguide sire, the relative dielectric constant to be used in the propa- 

gating sections, and the resonanc frequency of the filter must be decided upon 

first. The air-filled waveguide: must be of such dimensions that it is cutoff 

at resonance but can be made propagating when it is filled with the dielec- 

tric material. The experimental filters described in the previous section 

use X-band waveguide and a material with a dielectric constant of 10 for a 

chosen resonant frequency of 3.10 GHz. The only parameters that remain to 

be determined are the lengths of the propagating and cutoff sections. 

The length D of the propagatiig aection is determined by Eq. 11-29 or 

11-30. 

tan 0D - -|2§_ (11-29) 
6 -a 

or 

tan f$D + -|2§_ . o 

a -ß 
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Taking the arctangent of both sides 

BD + arctan ( ~^r) - arctan (0) - pw       (11-30) 
a -er 

where p is an integer Including zero 

a is the attenuation constant of cutoff section 

and B is the phase constant of propagating section 

Since the resonant frequency has been specified, a and B of the cutoff and pro- 

pagating sections respectively can be found by substituting u and the proper 

value of e In Eq. 11-1 with m-1 and n-o since the TEin node is being considered. 

>-\/<T>2 + <T>2-» 

10 

2P t <11-1> 
o 

where t  is the permittivity of the medium in the guide 

a and b are the usual cross-sectional dimensions of the waveguide 

and a and n are integers Including zero (note: m and n are not to be 

xero simultaneously). 

Thus the only unknowns In Eq. 11-30 are the length D and the mode number p. Now 

fro.-» the relation between 0 and p expressed by Eq. 11-31. 

n  £_  A       2aB 
D - 2 " 27 arctan 22 (11-31) 

a -B 

or 

*♦■ 
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where 

-X/4 < s < + T 
—  —  4 

it is clear that the shortest possible resonator length corresponds to p-o. 

As p takes on increasing integral values (1,2,3,•••) the length D increases. 

Any integral value may be chosen, however, in order to make the resonator as 

compact as possible values of p ■ 0, 1, or 2 should be used. Once p hac bean 

chosen the value of D can be calculated from Eq. 11-30. 

The values of a and 8, determined by using the  f , e and the waveguide 

size chosen here, are 

a - 120.6 nepers/m 

P - 1S3.0 radians/m 

Then for p-0; D-0.875 cm - 0.344", 

for p-1; D-2.92 cm - 1.15", 

and for p-2; D-4.98 cm - 1.96". 

The lengths of :he cutoff sections of waveguide have a considerable in- 

fluence on the loaded Q. of the resonator filter. The length L of a cutoff 

section has a direct bearing on the external Q£. as shown by Eq. 11-48. 

D 

u e e (a +8 ) it  (x) d* 
QE1 " QE2 "    r ' 2fl3 -2oL         <"-«*> 

4a ß e 

In turn Q£1 influences QL according to Eq. 11-50, where for simplicity Q,, is 

assumed to be equal to QE1- 

1    QE 
\ " rTT • [QE/Qu+2] <""*» 

Q  07   E u 
v
u  VE 
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Thus, if the design calls for equal length cutoff sections at both ends of the 

resonator, i.e., Q . - Q ., then Eqs.11-48 and 11-50 specify Q,. 

In order to calculate Q_. from Eq. 11-48 the value of 

z-D „ 
/  r<«) dz 

z«0 

muse first be determined. To do this f(z) must be plotted using Eq. 11-34. 

E - e"Jßz + eJßz eJß arctan <-§2§_) ^ (11-34) 

Now f(z) is the amplitude of the standing wave pattern relative to the incident 

field E. in the propagating section. Thus 

El 

Typical curves of f(z) were shown in Fig. 11-5 of a previous section. New the 

square of f(z) must be integrated along the length of the propagating section 

of waveguide. The value of this Integral is then substituted into Eq. 11-48 

along with u  , o, 8 and L to determine Q„.. 

In order to determine the value of Q. from Eq. 11-50 the value- of Q • 

Q_. - Q . and Q the unloaded Q must be known. .Sow Q depends on Q ,  . the un- 

loaded Q accounting for waveguide wall losses and Q ,_> the unloaded Q accounting 

for dielectric losses. The vslue of Q , ., though only approximate, is given 

by Eq. 11-44. 

ab \  [a2+(X/2)2] AfMÖ" 
Qu(w) TE    " 3  3 f-    (11-A4) uw "1,0,1  aJ(X/2) + a(A/2, + 2(X/2)J b 
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ihe value of Q . .  is given by the reciprocal of the loss tangent of the di- 

electric filling the resonator, thus 

'u(D)  tan 6L 
(11-42) 

Therefore to make Q / x and Q . .  high, the metal of the waveguide vails should 

have high conductivity and the loss tangent of the dielectric filling the resona- 

tor should be small. With Q , . and Q ,_x known the value of Q can be determined 
TI(W)     u(D) xu 

from Eq. 11-45. 

Q, u    1  +  1 (11-45) 
Qu(D)  Qu(w) 

Finally the value of Q, can now be determined from Eq. 11-50. 

It can be seen from the above procedure that the value of Q. can be con- 

trolled by varying such factors as L and D. Increasing L increases Q_, and in- 

creasing D also increases QE since then the integral of the square of f(z) over 

the length D increases. Now Q can approach the value of 0 if Q_ Is made large 

enough. On the other hand, as Q£ approaches zero so does Q.. 

It is almost obvious that if a high Q. is desired then a high insertion l^ss 

at resonance must be accepted. The relationship Is given by the ratio of the trans- 

mitted power T to the Incident power P . This ratio is according to Eq. 11-51. 

P 
o lQr/Q +2]

2 (11-51) 
res  lvE'vu ' 

Using the procedures and equations just presented it is possible to predict 

the behavior o* the filter. Once f » Q. and the insertion loss at resonance are 
IT   I* 

known, the frequency response of the filter can be calculated. This can be done 

by the equation and information given in Fig. 11-6. 

153. 



The values of the various Q's associated with filters which have specific 

resonator lengths D equal to 0.344", 1.15" and 1.96" were calculated. The 

function f(z) required for these calculations Is shown In Fig. 11-11. 

2 
The integration of f (z) is carried out as follows: 

J° f2(z) d, - Cp+l) J*/2 8in2 <_«> dz _2 jO.227" 8ln2(„/x/2)) d, 
"X/2 

But A - 2*/ß - 4.1 cm - 1.615", 0.227" - 0.577 x 10-2 «, and the two integrals 

are evaluated as: 

rl> .2 
jU  f^(z) dz - (p+1) (A/2-1/2) - 2(z/2 - l/4(A/(2ir))sin(4i.zA)) 

- (p+1)(1.025 x 10"2) - (.577 - .163sin 76.6°)x 10"2 

0.577x10 
-2 

- ((p+1)(1.025) - .418) x 10"2 

D ,2, 
So for p - 0 (D-.344"): ju   f*(«) dz - .607 

D ,2, 
for p - 1 (D - 1.15")i /" fz(z) dz - 1.632 

for p - 2 (D - 1.96"):  fD f2(«) dz - 2.657 
o 

Q£1 can be put In the form: 

QE. - 2.93 ( /D f2(.) dz) e2'120'6 L 

This equation was evaluated for typical values of L and p: 

p L 
«El 

2 3/4"-1.9xl0"2m 770 

1" 3510 

1 1/8" 7620 

1 1/4" 16000 

1 1.036" 2790 

0 1.015" 910 
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The loss tangent of the dielectric material used in these resonators is 

given by the manufacturer as 0.0007, therefore 1/Q .  . - 0.0007. The value of 

0. * using Eq. 44 is 6,130 for copper waveguide walls. Thus 1/Q . .  * 0.000163 

and hence from Eq. 50 1/Q » 0.000863. 
j 

With the above values of Q_. and Q known, Q, and the insertion loss <-t 
El     u       L 

resonance were calculated and have the values shown in Table 11-1. 

b. Experimental Results 

A typical measured curve of insertion loss versus frequency is shown in 

Fig. 11-12. The measured insertion loss at resonance and the measured Q, obtained 

from the response curves for the six single stage filters constructed are shown in 

Table 11-1. A comparison between the experimental and predicted values of in- 

sertion loss and Q. listed in Table 11-1 shows good agreement. 

The measured resonant frequencies for the four filters with D - 1.96" were 

very close to the predicted value of 3.100 GHz. A resonator with D * 1.15'* re- 

sonanted at 3.014 GHz. This deviation of f from the predicted value could have 

been caused by a deviation in the value of c of the dielectric from its nominal 

value of 10 or by a loose fit in the waveguide, creating a ausceptance across the 

guide. The dielectric slab was sanded down to a length of 1.007". The results 

for this case are given In Table 11-1 and shows how f can be lncreaaed by reducing 

the length of the dielectric section. A resonator with a D - 0.344" resonated at 

2.984 GHz. This dielectric slab was also sanded down to a length of D - 0.314'. 

The resonant frequency was raised to 3.088 GHz as shown in Table 11-1. An attempt 

to raise the frequency further resulted in the accidental breaking of the di- 

electric slab. 

A characteristic noted in all measured response curves was an unaymmetrv 

about the center frequency. The response curve shown in Fig. 11-12 is typical of 

the unsymmetry observed. An ideal symmetrical Q curve is shown dotted in Fig. H-I2r 
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TABLE 11-I 

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

I. D - 1.96" 

Outoff sec- 
tion length L 

Para- 
meter 

Theoretical Value 
for Qu - 1155 

Value observed 
experimentally 

3/4" fr 

\ 
Ins.Loss 1 

Ires. 

3.100 GHz 

289 

2.47 db 

3.10 GHZ 

260 

1.60 db 

1" fr 

% 
I.L. 1 

Ires. 

3.100 GHz 

698 

8.14 db 

3.10 GHz 

620 

5.6 db 

1 1/8" fr 

% 
I.L. 1 

|res. 

3.100 CHz 

890 

12.61 db 

3.102 CHz 

700 

13.2 db 

1 1/4" fr 

^Hres. 

3.100 GHz 

1,010 

17.9 db 

3.10 GHz 

780 

17.8 db 

II. D - 1.077" 

Cutoff elec- 
tion length L 

Para- 
meter 

Theoretical Value 
for Qu - 1155 
(D - 1.15") 

Value observed 
experimentally 

1.036" fr 

% 
I.L. 1 

|res. 

3.100 GHz 

634 

6.83 db 

3.102 

450 

5.4 db 

III.  D - .314" 

Cutoff sec- 
tion length L 

Para- 
meter 

Theoretical Value 
for Qy - 1155 
(D - 0.344") 

Value observed 
experimentally 

1.015" fr 
QL 

I.L. | 
|res. 

3.100 GHz 

327 

2.90 db 

3.088 GHz 

310 

4.3 db 
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A comparison between Che two curves reveals that the measured insertion loss is 

larger at frequencies below resonance and smaller at frequencies above resonance 

than would be obtained for a symmetrical response curve. This effect might be 

due to some imperfection in the measuring system; however, the effect can also 

be explained, in part at least, by examining the theory developed for the cutoff- 

coupled dielectric filter. 

It will be recalled that the resonance condition for this type of filter 

is 

tan BD - -f2^ d1'29) 
ß -a 

However for conventional met*l-walled resonators (all of which theoretically have 

perfectly symmetrical Q curves) the length D must be an integral number of half- 

wavelengths. That is: 

tan 6D « 0 (ll-29a) 

where 6 is a function of frequency and can be said to be proportional to frequency 

over a fairly large range. The value of 6 versus frequency is shown in Fig. 11-13. 

As the frequency is changed from the resonance condition of the above 

equations, the equations become inequalities. The difference between the right 

hand side and the left hand side of this inequality increases as the frequency 

deviation from resonance Increases. This difference influences the response cutve 

and hence the insertion loss of the resonator. Note that in Eq. ll-29a only the left 

side varies with frequency while in Eq. 11-29 the right side also varies with fre- 

quency. For the cutoff-coupled resonators tested here,a and 6 vary with frequency 

as shown in iig. 11-13.  It can be seen, from Fig. 11-13, that near 3.10 GHz, B is only 

slightly greater than a. Thus the product aß will be fairly constant with fre- 

2 2 
quency while the difference (8 -a ) will be fairly small and will vary greatly 

2 2 
with frequency near 3.10 CHz. For example, at 3.05 GHz, (6 -a )- 7,600, while at 
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3.15 GHz it is equal to 10,400.  As Che frequency f increases, ß increases and 

a decreases. Thus, while the left side of Eq. 11-29 is increasing, the right 

side is decreasing. On the other hand as f decreases, a lncrea&< J and ß de- 

creases and hence the Jeft side of Eq. 11-29 decreases and the right side in- 

creases.  Now sir.o: a  is only slightly greater than a, the departure from the 

resonance condition of Eq. 11-29 occurs at a rate faster for decreasing values 

cf f than it does for increasing values of f. This conclusion arrived at from 

Eq. 11-29 is borne out by the results of the measurements; that is, all 

measured response curves were unsymmetrical as predicted here. 

2.  Cascaded Resonator Filters 

The theory of cascaded cutoff-coupled dielectric resonator filters presented 

in an earlier section was practically all qualitative. Thus it is not possible 

to design a cascaded resonator filter in as precise a manner as was done for the 

single stage filters. 

In making up a cascaded resonator filter it is first necessary to fabricate 

two resonators with identical resonant frequencies. One of the resonators chosen 

for this was the resonator with 0 - 1.96" and L - 3/4". The other resonator used 

was tunable and had a D - 1.93" and L * 3/4". The construction of such a tunable 

resonator was described earlier. 

Actually two such adjustable resonators were constructed originally, both 

with 0 «• 1.96", and although they were constructed to be as nearly identical as 

possible, each behaved quite differently. One resonated at 3.076 GHz while the 

other resonated at 3.047 GHz (both measurements taken with the tuning screw turned 

all the way in). This behavior tends to confirm the previously stated suspicion 

that either the dielectric constant of the material used varies slightly from 

piece to piece or that small air gaps between the dielectric and the waveguide 

walls are sometimes present. To circumvent this uncertainty in f , the dielectric 
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pieces can be made somewhat longer than the calculated value of L and then 

sanded down In steps (checking f after each step) until f has increased to 

the desired value.  For example, the adjustable resonator with f - 3.076 GHz 

was sanded down to 1.930". Then with its tuning screw turned all the way in 

f was 3.095 GHz, and with the screw all the way out f was 3.104 GHz. 

The adjustable resonator and the fixed resonator with D - 1.96" and 

L - 3/4" were cascaded. That is, a cascaded filter was made up which consisted 

of a 3/4" cutoff section at the input, followed by the 1.93" propagating section 

with the adjustable tuning screw, followed by 1 1/2" of cutoff waveguide (3/4" 

from each of the two single stage filters), followed by the second fixed tuned 

1.96" propagating section, and finally terminated by a 3/4" cutoff section at 

the output. The response curve of this cascaded filter was measured and is 

shown in Fig. 11-14. 

While not changing anything else in this cascaded filter, the cutoff length 

L' between the two propagating resonant sections vas decreased in steps from 

the 1 1/2" value. The measured response curve for L1 ■ 0 is shown in Fig. 11-15. 

For all the values of L' tried the resulting values of f were recorded. There 

values of f versus L' are plotted in Fig. 11-16. 

The experimental results obtained agree with the qualitative predictions 

made earlier. One of the more Important predictions verified by the measure- 

ments was that f does vary with the cutoff length L' between the propagating 

resonant sections. For large L', f approaches the resonant frequency of the 

individual resonators. As L' is made smaller and approaches zero, f approaches 

the value for a single resonator whose propagating section has a length D equal 

to the sum of the two propagating section lengths making up in the cascaded 

filter. The resonator used in these measurements had an f - 3.305 GHz for 

L'- 0.  If the a and 6 which correspond to this frequency (118.0 and 170.1 
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respectively) and the total length I) which is equal to 3.92" - 9.96 x lu" m 

are used in Eq. 11-29 the resonance condition is found to be satisfied. It is 

interesting to note that the relation between f and L' appears to be an ex- 

ponential (Fig. 11-lb). The relation can be expressed as: 

f - 3.10 + 0.20 e-
L'/°-34" 

where L' is in Inches and f is in GHz. The values of f given by this empir- 

ical relation are almost identical to those plotted in Fig. 11-16. 

The measurements made on the cascaded filter also verify the prediction 

that cascading results in an increase in Q.. This behavior is not unlike that 
L 

obtained for conventional filters. The Q of the cascaded filter calculated 
Li 

from Fig. 11-14 is 345. The Q of the adjustable resonator was found to be 258 

while that of the fixed resonator was found earlier and is listed in Table 11-1 

as 260. Thus cascading these two resonators did result in a filter with a 

significantly higher Q . 

Although cascading did increase QL, it could also have been increased by 

using a single stage filter with a longer cutoff section. The question arises 

as to whether a single stage filter can be made to have both a higher Q. and 

a lower Insertion loss at resonance than the cascaded filter. The cascaded 

filter used in these measurements had an insertion loss at resonance of 10.6 db 

(Fig. 11-14) and a 0. of 345. However, the fixed resonator which was used in the 

cascade has a 0, of 780 when used with cutoff sections 1 1/4" long (see Table 11-1) 

Furthermore, when the cutoff sections of the singlp «tage filter were reduced to 

1" a value of Q. ■ 620 was obtained for an insertion loss at resonance of only 

5.6 db. Thus it is possible foe  the single stage resonator to have a higher 

Q. and a lower insertion loss at resonance than a filter made of two cascaded 

resonators. 
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XII. CONCLUSIONS AND RECOMMENDATIONS 

The cutoff-coupled dielectric resonator can be used as a two port band 

pass filter. Its insertion loss varies with frequency in much the same manner 

as the insertion loss of a lumped parameter filter or of a conventional metal- 

walled microwave resonator. 

The theory presented in this  part of the   report predicts the resonant 

frequency, the loaded Q., and the insertion loss at resonance of the cutoff- 

coupled dielectric resonator band pass filter.  It was found that the cutoff- 

coupled resonator has a standing wave pattern at resonance which consists in 

general of a non-integral number of half wavelengths. This fact makes the cal- 

culation of the resonant frequency, the loaded Q., and the insertion loss at 

resonance somewhat more difficult than in the case of the conventional metal- 

walled microwave resonator. 

Various cutoff-coupled bandpass filters were constructed for use at S-band. 

These filters were built with X-band waveguide, and ranged in length from about 

2" to 5". A dielectric material with e » 10 and a loss tangent - 0.0007 was 

used to fill the resonators. Measurements on these filters showed values of 

Q. as high as 780. However, to obtain insertion losses at resonance of less 

than 2 db the Q, had to be decreased to about 250 by shortening the lengths of 

the cutoff sections. The measured values of Q. , f , and insertion loss at 
^L' r' 

resonance agreed quite well with the values obtained by calculation using the 

theory. The measured response curves were however, always somewhat unsymmetrlcal 

about the resonant frequency. The unsymmetry is due at least in part to the 

variation of the propagation and attenuation constants with frequency. 

Cascading of two cutoff-coupled dielectric resonator band pass filters was 

investigated. The theory and measurements show that the resonant frequency of 

the cascaded filter varies greatly with th« length of the cutoff section between 
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the tvo propagating resonant sections. Prediction of the exact behavior of the 

cascaded cutoff-coupled filter was not fully accomplished due to the complexity 

of the problem. 

The use of a cutoff-coupled dielectric resonator band pass filter instead 

ot a conventional metal-walled filter may be advantageous in two ways. First, 

".he cutoff-coupled filter is small in size. Secondly, it is highly compatible 

for use with dielectric-filled waveguide systems. 

Further investigations in this area might Include studies of other types 

of cutoff-coupled microwave filters, such as band rejection filters and branching 

filters. Also, some of the more difficult theoretical problems encountered in 

the present study might be Investigated further, perhaps using computer tech- 

niques. 
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Part 3 

RECTANGULAR BEAM WAVEGUIDE RESONATOR AND ANTENNA 

Introduction 

The study carried out during this phase of the research dealt with two 

general applications of the beam waveguide of rectangular symmetry. These were 

the rectangular beam waveguide resonator and the rectangular beam waveguide an- 

tenna formed from the resonator. 

The field configurations inside the resonator were determined as were also 

the resonant frequencies. Design criteria, fabrication techniques, and methods 

of coupling to the resonator were devised. The predicted characteristics of the 

resonator developed from the resonator theory were verified experimentally. 

The theory of the rectangular beam waveguide antenna was developed and an 

equivalent circuit of the cavity backed antenna was derived. Both slot and hole 

coupling were studied analytically and experimentally. Designs for exciting both 

the n-o and n«l modes were worked out and the use of both of these modes for 

a monopulse radar antenna was investigated. 

XIV.  THEORY OF THE RECTANGULAR BEAM WAVEGUIDE RESONATOR 

A. Beam Waveguide of Rectangular Symmetry 

The beam waveguide of rectangular symmetry has been investigated theoret- 

43 
ically by Schwering.   His investigation is based on the principle that the 

general solution for the fields in a source free region of free space can be 

obtained by a superposition of plane waves travelling in all directions. Re- 

stricting the direction of propagation of the plane waves to lie within a small 

43. F. Schwering, "Reiterative Wave Beams of Rectangular Symmetry," Archiv der 
Elecktrischen Uebertragung, vol. 15, 1961, pp. 555-564. 
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angle around the beam axis permits an approximation to be made that results in 

the separation of the total field into two partial fields. One partial field 

has only E and H for transverse components: 

Ex -1    *nl^y**~jkz 
x  "    n.m 

n,m-o 
(14-1) 

H - /e /y  E 
y    o o  x 

where k - propagation constant in free space 

y ■ permeability of free space o 

e - permittivity of free space 

n and m are non-negative integers called mode numbers 

The other partial field has only E and H for transverse components: 
y     x 

(14-2) 

y  "    n,m n,m«»o 

H - - /e /M   E 
x     o/Ho y 

(1 2) 
To find an expression for the beam modes E *  (x,y,z), the phase cor- 

n«m 

rection ty made by each phase transformer shown in Fig. 14-1 is written as 

<Kx,y) - - *o + *x x
2 + ib y2 (14-3) 

where <|» , \b  , \l>   are constants 
o Tx  y 

The special case <j/ « t|) corresponds to a beam waveguide of cylindrical sym- 
x   y 

me try. The values of >{; and ty    differ from each other for a beam waveguide of 
x     y 

rectangular symmetry.  It can be shown that the orthogonal beam modes of rec- 

tangular symmetry are described over the range |z| <_  z by: o 

Z?L2)(x,y,z) - a(1:2)   Ul + (2u2z/k)2]   [1 + (2v2z/k)2]} 
-1/4 

2u x 2v y 
He_   (. °.   ,    +- • He_  ( 

n    /l+(2u2z/k)2 m    /l+(2v2z/k)z 

o o 
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2 2 2 2 u x v y / o oJ 

exp I - 
L+(2u2z/k)2     l+(2v2z/k)2 

o o 

2uAzx2/k 2v*zy2/k , 
exp{-j  [ ~ - + 2_ (n+l/2)arctan(2u z/k)- (m+l/2)arctan(2v z/k)]} 

l+(2u z/kr  l+(2v«/!0 ° ° 
(14.4) 

where u ■ parameter determining field variation along the x 

direction 

vQ = parameter determining field variation along the y direction 

He - Hermite polynomial of degree n 

a- a constant amplitude factor depending in value on excitation 

method and shape of phase transformers 

The total field is the superposition of all the beam modes with non-zero values 

of a n,m 

A useful dimensionless parameter w can be defined by 

w - 2u2z /k (14-5) o    o o 

A special case of a beam waveguide of rectangular symetry occurs when v is 

set equal to zero. Equation 14-4 is then simplified substantially, and becomes 

E<1,2)(x,z) - a*1'2* [1 + (2u2z/k)2]X  Hen (. V.   ,.)• 
n n ° A+(2u£z/k)z 

22 ,4 2.. u x 2u zx /k . 
exp { ~ ^ - j [ °-5 5- - (n+l/2)arctan(2u z/k)]}   (14-6) 

l+(2u z/kr     l+(2u z/k)Z ° o o 

Note that now the beam modes are independent of y. This y independence can 

be brought about by constructing the waveguide to be independent of y, that is, 

by letting the <|; of the phase transformers be zero. 

B. Forming a Closed Resonator 

Any waveguide may be formed into a resonator by placing short circuits 

along two phase fronts that are separated at resonance by pn radians of phase 

172. 



shift, where p is an integer. Phase fronts of the bea« waveguide of rectangular 

symmetry are found using the equations of the previous section. 

The case of a bean waveguide with v - 0 is the only one that will be treat- 

ed in this report. Such a waveguide has the transverse electric field coaponents 

of the nth mode given by Eqs. 14-1, 14-2, and 14-6 aa: 

2    § u2x2 
E* v " an(1'2)  U+(2uV/k)2]"1/A Hen(7-J^ )exp{ ^! .} 

X>y        n ° ° /l+(2u2s/k)2 l+(2u2z/k)2 

o o 

2u zx /k . .      _. 
exp(-j  [ S-x r~ (n+l/2)arctan(2u z/k)]}exp(-jkz) u*"" 

l+(2u^/kr ° 

The phase shift *    is thus 

i   - kz +   2u?"2/k     - (n+l/2)arctan(2u2r/k) 
n l+(2u_z/kr 

l+(2u^z/k)' 

->< 

(14-8) 
o 

Hence <t » 0.    So the z ■ 0 plane is a surface of constant phase.    This 

plane is chosen as the convenient position of one of the short circuits of the 

resonator.    Then the other short circuit needed to make a resonator aust lie 

along a phase front which at resonance has ♦   ■ p*.    Here the integer p is set 

equal to unity for the sake of making the resonator of small size. The surface 
t 

with >   ■ n is denoted as the surface z - -z (x) shown in Fig. 14-1. n n 

To find z  (x) the  following equation must be solved: 

2uVx2/k 
» - kz'  + —=_5_    _  fn+1/»*«,.-.._/■».2_ 

n l+(2u"W '  (n+1/2)arctan<2V*) (14-9) 
o 

Replacing u<) by WQ using Eq.  14-5 gives 

.      kw2x2z'/2z2 

W " ""■ + Hw2(,'/, )l"  (B+1/2,,rttln(V>o) (14-10) 
o    n    o 

Generally ZQ ia many wavelength, long,    Typically, ZQ is At ie„c 50*, where A i. 

the wavelength.    Now ZQ correaponds to . radian, of phase shift, and so «^ 1. 

approximated by X/2.      Thus if WQ i. ten or le.. the maximum value of (w z'/z ) 
on    o' 

is about  <10(A/2)/50A) - 0.10.    Then 

arctan  (w z'/z ) ■* w z'/z o n    o o n    o 
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and 1 + (w z'/z )2 < 1.01 = 1 o n o' — 

w X W 
hence        (J) - TT = z    [k + k -~ - (n+1/2) —] (14-11) 

2z o o 

Solving for the phase front surface z (x), the surface at which the short cir- 

cuit must be placed, yields 

z'(x) TTT  (14-12) 

k [1 + -Sp - (n+1/2) ^] 
2z o 

Using k - 2TT/A gives 

*>> XJZ w^x7 <""13> 
1 - <«*I/2>E- + fr 

o  2z o 

Thus once w , n, z , and k are chosen, Eq. 14-12 may be used to determine 

z (x) for the resonator, o 

The positions of the two short circuits required for a resonator have now 

been established at z ■ 0 and z - -z (x), as sketched in Fig. 14-1. In prac- n 

tice these short circuits would consist of metal walls that approximate perfect 

conductors. The y independence of the resonator, because v - 0, dictates that 

both short circuits must extend to y ■ + • and y - - «°. This infinite extension 

is impractical, so some way is sought to confine the resonator to small y space 

while still having v ■ 0. 

'    The method devised for limiting the y extension of the resonator is to place 

metal walls approximating perfect conductors at two constant y planes, y • - h/2 

and y - + h/2 .  Figure 14-2 shows the rectangular beam waveguide resonator thus 

formed. 

The boundary conditions at perfect conductors are well known, 

n x E ■ 0 
(14-14) 

n x H - J 
8 

where n is the unit vector normal to the conducting surface 
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• 

and Jg is the surface current density in the conductor 

Applying the first condition to the resonator walls at y ■ + h/2t - h/2 

gives E ■ E » 0 at these two constant y planes. But since v » 0, the reson- 

ator fields are invariant with y, and thus E and E must be zero everywhere 

within the resonator. Then the partial field relation in Eq. 14-1 gives H - 0. 

The other transverse partial field consists of E and H as given by Eq. 14-2 
y     x 

and can exist in the resonator. 

The only possible complication due to the introduction of the conducting 

planes at y - + h/2, - h/2. is the possibility of resonance between these paral- 

lel planes. Plane waves with H - H u and E - E u travelling in the +y di- 

rections shown in Fig. 14-2 would resonate if h ■ A/2   Note that H and E 

are constants.  Such a resonance is not a rectangular wave beam resonance but 

is similar to an ordinary larallel-plane resonance. To avoid this spurious 

resonance, h must be restricted to h<X/2 throughout the frequency range of 

interest. 

C. Determination of Resonant Frequencies 

The resonant frequencies of the rectangular beam waveguide resonator can 

be derived from Eq. 14-12 for z'(x) in terms cf k. Rearranging the equation 

gives k in terms of z (x): 

k - 
n 

TT  . ,    . 1* o 
z^öö + (D + 2> T 
n o 

1 + 

2 2 
w x 
o_ 

2z 

(14-15) 

Using k - 2nf/c, 

cz 

2    2 ? 
?TIZ  + 1TW X 

O      O 
-I   k. 

 Tt    ,  ,   , lv  O 

Poo + (n + 7> T n o 
(1- 

1/6. 



Equation 14-16 can be put in a more convenient form by letting x • 0, thus 

fn - zPW + (n + 7> FT (14-17) 

The above expressions for the resonant frequencies raise the question as 

to whether a given resonator with a short circuit at z'(x) - z'(x) has only a 

single resonant frequency denoted by € or whether there are also other resonant 

frequencies.  For a mode to be in resonance the position z"(x) of its phase 

front must coincide with the fixed reflecting surface z'(x). If it is assumed 

that the reflecting surface z'(x) has been calculated to be equal to the phase 

front of the n « 0 mode, then all n modes will be resonant In the resonator only 

if 

z"(x) - z"(x) n     o 

Substituting in Eq. 14-17 gives 

7T 

2 2 .  W       W X        . w       w ,   , , 1* on  .  on    .   1 oo . ,  oo x 
k - (n + TT)  t  k —=—  k - ■=■ + k 

■y-j (14-18) 

n      2z    n „ 2     o  2 z     o 0 2 o     2z o      2z o o 

w 
Let   be denoted by p . The above equation is true for all x only if two 

o 
conditions hold, 

and 

kn " (n + I> *n - ko - I Po (14"19> 

Kvl - K vl (I*-2ö) n*n   o o 

Substituting Eq. 14-20 in Eq. 14-19 

kn"(n + T> Po^T^-^-IPo <14-21> 

Letting k - k + Ak , 6 n   o   n* 
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1 /    ko 1 

Si ~ (n + V po   J kTT " - 2 Ak    -  (n + -)  p^   / 1——-r ±v (14-22) 
o 

But for Ak    small, which is true for small n, results in 

/k ,/k-k /Ak Ak 

Wk+k        W k W k x2k won» o V o o 

So Eq. 14-22 becomes 

Ak - („ + i) (i - _H) p . - i p 

Thus 

2k ' *o 2 »o o 

Ak 
Akn-(n + |)po+(n + i)I^po--ipo 

1 Akn 
Akn + (n + 2> 2T Po " npo o 

Finally, using k - 2flf/c, 

np 
Af« " 2~T" * £ (14-23) n . p    4.K 

1 + (n + f) 2T- 
o 

where Af ■ f - t" n   n   o 

Thus the resonant frequency f for any mode n is known in terms of f . All n o 

modes can resonate in the resonator with the fixed short circuits. Each mode 

however resonates at a different frequency f . 

A simplified expression for Af may be found for small n. Recall that z 

is at least 50A and w is less than 10. Then for k corresponding to some 

microwave frequency and for n*10 or less 

Hence 

(n+1/2) 2iT « 1 
o 

cnw /z 
Af      ° ° n    2ir 
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or if  the quantity Af  is set equal  to f    .-f  ,   thus 

cw 
Af - ^—2- (14-2'.) 

2lTZ 
o 

which is compatible with Eq. 14-17. Hence Eq. 14-17 is valid for f for n - 0 
n 

to at least 10 in a resonator built with a short circuit position at z'(x) - 

There is another way of showing that Eq. 14-17 is valid for small values 

of n. From Eq. 14-20 it is obvious that w  varies with f as, 
on n  * 

w  - D//T (14-25) 
on     n 

where D is a constant 

Thus for a small frequency range, for example from 9.0 to 9.5 GHz, which corres- 

ponds to small values of n, w  will»be approximately the constant w . Then 

Eq. 14-19 gives once again that Af - cw /(2itz ). In conclusion, Eq. 14-17 cor- 
o   o 

rectly gives the resonant frequencies of the rectangular beam waveguide reson- 

ator. 

P. Resonator Field Configurations 

Since it has been assumed that field variations in the y direction do not 

exist the only field variations that do exist are those in the x direction and 

those in the z direction. The z variation of the fields in the resonator is 

quite simple since it is known that the field near the plane z - 0 of Fig. 14-1 

is approximately a plane wave of E and H travelling in the z direction, and 

that the phase shift the wave undergoes in travelling to the short circuit at 

z'(x) is ff radians. Thus the E and H field variations with z are sin (irz/z') 
y   ; * 

and cos (nz/z1) respectively. 

The x variation of the fields is given by the equation for the beam modes 

of rectangular symmetry as , 
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g(u x)  - He B    o n 

iU   X 
o 

A ♦ «S f,2 

2 2 u x o 

1 + <2u2 h2 
ok 

,  4 z    2 2u    — x 
. j  °J*  

1 +  (2uo k> 

(14-26) 

where the He    are Hermitepolynoraials of degree n. 

It is Important to note that there are at least  two different types of Hermite 

polynomials In widespread use.    The Hermite polynomials used for the rectungu- 

44 lar beam waveguide for orders up  to n-7 are, 

He  (x)  = 1,  He.(x) - x,  He,(x)  - x2 - 1 oil 

He3(x) - x
3 - 3x, HeA(x) - x

4 - 6x2 + 3 

He5(x) - x
5 - 10x3 + 15x 

He6(x) - x
6 - 15x4 + 45x2 - 15 

He?(x) - x
7 - 21x5 + 105x3 - 105x 

Since u /k is usually much grater than z', Eq. 14-26 may be written as, 

|g(u x>| * Hen[2(uox)]e-
(uox) - g^x) (14-27) 

The function g (u x) influences the coupling tn each resonant mode and 

also determines the performance of the resonator as an antenna. Thus a plot 

of g (u x) for various modes is of interest. An IBM 1620 computer was used to 

calculate g„(u x) for values of n » 0 to n ■ 7. The functions are plotted ver- n o 

sus u x for x> 0 in Figs. 14-3 through 14-10. The Hermite polynomials He (2u x) 

are odd functions for n odd and even for n even, therefore 

g(-u x) ■ g(u x) for n even 

and g(-u x) ■ - g(u x) for n odd. 
o        o 

x»e grapoS are not noiwoxxzeu slues the various possibxe normaxizätionä chat 

could ba made are all equally logical. 

44. F. Schwerlng, "Reiterative Wave Beams oi Rectangular Symmetry", Archiv 
der Elektrischen Uebertragiing. vol. 15, 1961, pp. 557 and 564. W. Magnus 
and F. Oberhettinger, Functions of Mathematical Physics, Chelsea Publish- 
ing Co., Toronto, 1949, pp. 80-82. 
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E.    Theoretical Expression for Unloaded Q 

The unloaded Q of a resonator is given by the well known expression 

Qoo - tt   1 (14-28) 
c 

where cu * resonant angular frequency 

W "  energy stored in resonator at resonance 

P ■ power dissipated in resonator at resonance. 

In an open resonator and particularly in a beam waveguide resonator three 

types of power dissipation may take place. They are diffraction loss, ra- 

diation loss due to the coupling structure and conduction loss in the resona- 

tor end plates. In the type of beam waveguide resonator being considered in 

the present study no radiation loss can take place. This will be true even if 

the resonator shown in Fig. 14-2 is of finite length in the + x-direction. The 

length in a properly designed resonator is such that the openings at the ends 

are cutoff to waves in the + x-direction. Some diffraction could take place; 

however the design is such that this loss is negligibly small. Thus the princi- 

pal loss that must be accounted for is the copper loss in the four sides of the 
45 

resonator. Equation 14-28 then can be written 

vj «2 dV 
Q  ■= u  —~i  (14-29) 
00   r / R a-? dS ;   tan 

s 

where V - volume of resonator 

U - permeability of air filling resonator 

H   - tangential component of H at surface S 

S ■ surface of all the metal walls that make up the resonator 

R ■/ v'■■' - surface resistivity of meta? walls where a  is the 

conductivity 

45. H.A. Atwater, Introduction to Microwave Theory, McGraw-Hill Book Co., 
New York, New York, 1962, p. 145. 
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Now since the resonator fields do not vary in the y-direction 

JH2 dV - h/H2 dx dz (14-30) 

If it is assumed that the walls in the planes y •» constant have a surface 

with resistance IL and area S, and that the other walls have a surface with 

resistance R_ and area S„ then 

,2  ,„  „ t    „2 3„    . „ t r „2 JRH:  dS - R- / H~  dS, + R^hf Hf  dx (14-31) i     tan     1 '       tan  1   » ;  tan 8 Sj^ a 

The energy stored and power lost calculated on Jie assumption of the existence 

in the resonator of plane waves very closely approximates the actual conditions 

in the rectangular beam waveguide resonator. Thus the H is 

H - H - H cos ■?— z g(x) (14-32) x   °    o 
where H g(x) is the H field distribution along the plane z  » 0 

When this value for H is substituted in Eqs. 14-29» 30 and 31 the value for 

Q  is %oo 
CO 

oo 

i u hf  fV2 H2 cos2 ~ z g2(x) dx dz r o '  *         o A_ 
(14-33) x  z«o                        o 

2 KJX°/2 j H2 cos2 Y- z 82<x> dx d2+2 *2hf Ho cos2 f2" z 

z«o      X                        O                                              X                        o 
g (x)dz 

X 
z-o, -r- 

Now H j  g (x) dx Is a common term and may be cancelled. Also o 
x 7* /2        2 2*   .        Xo 

J    O C08     T— dz   - 
O nO 

Thus Eq.  14-33 reduces to 
*o to u    h —r 

Q      . _L° 2  (14-34) 
x>o      -„    Ao 

2R1 T + 2 R2h 

If R. ■ R_ ■ R then Q    becomes ' 

io u h -T- 

%o '    R(W4h) <14"35> 

Note that Q  is independent of the mode number since g(x) does not appear in 

the equation. 
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F. Probe Coupling to Various Modes 

46 
The theory of a probe-coupled microwave resonator has been developed. 

The equivalent lumped-parameter circuit is shown in Fig. 14-11 and the values 

of R, L, and C near the resonant frequency f of the nth mode are given by 

O O Xi 

where a -f e • J • dV (14-37) 
n  ; n 

e - normalized elf trie field of n  resonator mode 
n 

J - assumed current distribution on probe 

I - input current to probe 

V " volume of resonator 

Now ö must satisfy the orthogonality relationship, 

/ e I • e* dV - 6  - {? lor n<hi (14-38) 
'   n   m     nm   1 for n"m 

It was shown in section D of this report that for the rectangular beam 

waveguide resonator the electric field is of the form, 

2 2, 
e    - u   N    He    (2u x)  e_U°x    sin —*■ (14-29) nynno A 

where N    is the normalizing constant. 

Now e    given by Eq.  14-39 must satisfy Eq.  14-38.    To do this the Integral of 

Eq.  14-38 most be evaluated. 

SL 2 2 ''2 
z' (x)      2        «,, -u x -u""x 
/ / u    /     N    He (2u x)e    °     N   He (2u x)e        • ' J h    J n      no m      mo z»o    y--j x»-00 

.  2 2rrz   .     .     . sin   T— dx dy dz 
Ao 

46.    R.F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book 
Company, New York, New York,  1961,  pp.  431-436."" 
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When the approximation is made that z ranges fro» «ero to-*'(x) -X /2 then 
o 

-2u 2x2        A./2 
NnVh £ «e„ <2uox) Hen (2uox) e      °       dx J°      sin2 fL t<U (14.40) 

«■O O 

Now 
2 __ v 

f He (v) He (v) e    2      dv - „! /IT 6 
"*>      «in ' nm 

Therefore 

-2u2x2 r-^u     X .     I—I 

. Hen(2V> H«m<2V> e      °        d--~Vf«nB1 (1A-4D 
o " 

Thus Eqs. 14-38 through 14-40 are valid for n*n. Equation 14^0 may be solved 

for N   when n-m thus n 

or 

„ 2    u 
Xo    ,-        2 -2u«2x2 

*n "   7—T — jl » 
y ch f f Hen

2(2uox) e^o*** 

n V^TFF 
(14-42) 

Now that  e   has been shown to satisfy the orthogonality relationship there 

remains the choice of a current distribution along the probe.    A reasonable 

assumption appears to be that a standing wave of current of sinusoidal form 

exists along the probe. 

sin k (y-| + d) A 

J - J   »   - J * 2 

/     »*" «■ \j   • 
II i 

_        I   n sin kd 
J   u  -4 
7   y      1 h 

^0 for y<|-d 
(14-43) 

47. Second reference in footnote 44, p. 82. 
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1 
where d is the probe depth, that Is the extension of the probe from the wall 

at y -+ -j to the length y-+ -j-d. It is *slso important to note that the 

probe is assumed to have a delta function dependence in the x and x directions 

In Eq. 14-43. This assumption makes the required integration much simpler but 

will affect the accuracy of the solution, since the probe does have a finite 

radius. Substituting Eqs. 14-39 aid 14-43 into Eq. 14-37 gives, 

, 2 2 
A . -U     X 0 . 

-|    | He„<2V> e        8ln jr * xn 8in k<y-£+d> 
'n-L _/» , i"_,,— j-n 

Now 

V€hf r 
i-o    y -7- d X»-» U        X      _.        - -2u    x 

2 1/ ..   o r- He 2<2u x) e     °       dx   sin kd 
n       o 

He (0) n    ' 

X 
•6(x)  6(z+-f) dx dy dx (14-44) 

*o 

lnh^r . -2u *x' o 
He* (2u x) e     °       dx n        o 

       r2      .2»      .  .       o» 

I  sin k(y-£ + d) 
:/   —^rzr— dy <14"A5> h' sin kd 

X 
-Ä X 

/ 2 (sin |* s)  -6(x- -~) dx - sin | - 1 
o o 
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and 

mw 

h 
2 

/ 

2    d 

sin k (y - y + d) 

~   sin U dy ,kd    sin u 
sin kd 

du 
k 

(1-cos kd) 
- -    k sin kd 

(14-46) 

Therefore 

1 „      kd 
■ - ktan r 

-Hen(0) tan ^ 

r"   /  ;   , rn— 
kVeh ■/ /    He'  (2u x) e      °      dx I       4     _     no 

(14-47) 

Substituting this result into Eq.  14-36 for R   yields 

R   - n     w 
oo 

He2(0)  tan2 ^ 
n *■ 

*      „ ,22 
?        \>              2 *"2u«* 

k eh -r- I   He*  (2u x) e     °      dx 4             no 

(14-48) 

Using Eq. 14-41 gives 

R 
Q     He2(0)  tan2(kd/2) oo     n 
Wn    k2eh(X /4) Hi ^71 

o        u o 

(14-49) 

At a resonant frequency f   the net reactance of the L--C combination in 

the equivalent circuit is zero.    Thus the equivalent circuit of the rectangular 

bean waveguide resonator at resonance is simply the resistor R    of value given n 

by Eq.  14-49.       Foi ■isslon line of characteristic impedance Z    feed- 

ing the probe,  the reflection coefficient at f    is thus 

- (R -Z )/(Rn+Z ) no       no 

Critical coupling, for which p - 0, will then occur at a different 

(14-50) 

probe depth for each «ode.    Critical coupling to the nth mode means that 
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or 

Z • 
o 

oo 
(1) 

„ 2,n.   .  2 kd 
HeÄ (0) tan -=- 

n       JL 

k2eh -^ fHen
2(2uox) e 

,22 -2u x o dx 

(.14-51) 

Z u k2eh -r 
o o    4 

oo 
constant 

H'n<0) 

- 2 2 
2      -2u x 

r He/(2ux) e  °  dx *   n   o 

tan 2 kd 

(14-52) 

The terns on the left hand side of Eq. 14-52 are approximately constant at least 

for the first 8 modes. Equation 14-52 reveals that as the probe depth d is in- 

creased from zero the first mode to become critically coupled is the one which 

yields the largest value of 

He>) 
, 22 ,      -2u X 

r  He *(2u x) e  °  dx '   no 

energy density at probe 
integral of energy density (x-dlrection) 

He 2(0) 
n 

tu 
■ normalized energy density at probe 

a u 
pa (14-53) 

The next mode that would change from undercoupling to critical coupling would 

be the mode with the second largest value of lormalized encT.g;.» density at the 

probe. Thus, it may be concluded that as the probe penetrates Into the resona- 

tor the modes become critically coupled In sequence n-n', n", n'", ..., 

where u ,  >  u ,, > u ,,,>.... This observation bears out what would be 
pn   pn    pn 

expected from physical considerations namely, that the mode which has Its 
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önergy concentrated in the vicinity of the probe would become critically 

coupled at a smaller probe depth than a mode which has its energy concen- 

tration more remote from the probe. 

In general the equivalent circuit of Fig. 14-11 has a probe reactance 

jX Inserted as shown. Thus near each resonant frequency the equivalent cir- 

cuit consists of R in series with jX. The result is a detuning effect due 

to the reactance and a slight altering of the resonant frequency. At reson- 

ance however, the input impedance at the probe is just R . 

XV.  MEASUREMENTS MADE ON A BEAM 

WAVEGUIDE RESONATOR 

A.  Design 

The theory developed for the beam waveguide resonator was to be veri- 

fied. To do this a rectangular beam waveguide resonator was designed and 

fabricated which had a resonant frequency for the n»o mode near 9.0 GHz. 

The most important parameter in the design of the resonator is the 

ratio (w /z ). This ratio determines both the frequency spacing between 

modes and the spread (standard deviation) of the Gaussian field amplitude 

distribution in the x-direction for the n=o mode. The value for z was chosen 
o 

equal to 100X which at a frequency of 9.0 GHz results in z »3.33 meters. A 

value for w ■ 5 was chosen since this resulted in a reasonable value for Af 
o 

of 72 MHz as determined from Eq. 14-22. The amplitude of the field as a function 

of x for the n»o mode is 
kw 

,„(,) - e" if »2 0*-U 
O O 
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Thus  the amplitude will be only 1/e of its maximum value at a distance 

x(l/e) ■ 0.084 meters  from the center of rescwtor  shovn in Fig.   14-2.    At a 

distance of x»15 inches or 0.381 meters 

f(x) - e-(0.381)2/(0.084)2 m g-20.6 _ 10-11 

The larger the value chosen for the ratio (w /z ) the larger Af will 

be and the smaller x(l/e) will be.  The value of (w /z ) cannot be made too 
V     o 

large without violating one of the conditions assumed In the solution for the 

beam modes. The beam modes for the confocal case for which w - 1 were de- 
o 

rived on the condition that z be of the order of 50/X so that (w /z ) has a 
o o o 

maximum value of about (1/50X). Since w »5 and z -100A, which are the values 
o      o 

chosen for the present design, result in a value for (w /z ) of (1/20X) the 

question of the validity of the mode solution arises. It will be assumed 

for the present that the value of (1/20X) is a reasonable upper bound for 

(w /z ). Thus the corresponding value of Af • 72 MHz for f - 9.0 GHz will 
o o 

also be considered an upper bound. 

The equation for the curved surface z'(x) of the resonator must be kuown 

so that this surface can be machined. The curve for the n«o mode can be cal- 

culated by substituting (w /z ) - (1/20A) and f - 9.0 GHz into Eq. 14-12 , 

z' (x) 
0.66 

l+7.42xl0"4x2 
(15-2) 

where z'(x) and x are in inches for convenience of the machinist 

Several factors must be taken into consideration when deciding on the dis- 

tance the resonator is to exteid in the x-direction. A previous calculation 

showed that at x=15 inches the amplitude of the field was only 10   of the 

amplitude at the center of the resonator. Thus if the resonator was made 15 

inches on each side of center the total length of 30 inches would still be a 

convenient size for machining. Finally, the value z'(x«L/2 -15") is 0.565". 
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The corresponding cutoff frequency f - c/(2z' (L/2) ) * 10.50 GHz, which is 

sufficiently high to prevent any waves of interest from escaping out the ends, 

hence L was chosen to be 30". 

The value chosen tm  the resonator height h was 3/8".  This dimension is 

considerably smaller than A/2 anywhere in the X band range and thus parallel- 

plate resonances should be impossible. The height is still large enough to 

give the resonator reasonable volume. 

B. Fabrication 

The resonator was made out of a 1 1/8" x 3" x 30" piece of brass stock 

and a 1 1/2" x 1/4" x 30" brass strip. The large piece of brass had a trough 

milled into it thus forming the three surfaces z'(x), y » + 3/16" and y - - 3/1'S". 

The trough was milled using a 3/8" x 1" diameter side cutter. The depth of cut 

was determined from values calculated with the aid of Eq. 15-2. The curve 

z'(x) is so gradual that z'(x) was approximated by cutting steps spaced one inch 

apart.  The steps were rounded off because of the size of the milling cutter 

and a very smooth curve resulted all the way from z'(0") where the depth of cut 

was 0.66 inches to z'(15") were the depth of cut was 0.565 inches. The brass 

strip which formed the fourth wall of the resonator at the plane z»o was attached 

with screws spaced every 3/4" in the x-direction and in two rows y - + 3/8". 

The resonator was made with care since dimensions were to be held to within 

one or two thousands of an inch. The resonator was also designed to be rigid 

enough to resist warping and is the reason that, although the maximum depth of 

the trough is only 0.66 inches, the dimension of the brass block along the z- 

axis was 3 inches. The photograph of the completed resonator is shown in 

Fig. 15-1. 

The coupling arrangement to the x-band waveguide is also shown in Fig. 

15-1.  The coaxial to waveguide junction has its type N plug converted tc a 
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type BNC jack by means of a N to BNC adapter. The BNC jack connects to a 

small rigid coaxiable cable which was Inserted through a thread sleeve or 

bolt. The center conductor of this coaxial cable extends about 1/8 Inch be- 

yond the end of the threaded sleeve and acts as a small antenna or coupling 

probe when projected Into the resonator. The vertical direction in Fig. 15-1 

corresponds to the y-direction in Fig. 14-2.  Since the E field is in the y- 

direction, and for the n«o mode has its maximum ampliutde at x«o, z ■ —r—^ , 

a tapped hole to receive the coupling probe was inserted in the resonator at 

this point. The probe coupling can be adjusted by turning the threaded sleeve 

in or out as desired. Since the end of the threaded sleeve is flush with the 

upper inner wall of the resonator at only one setting of the probe depth, a 

small perturbation will be introduced for all other probe depth settings. 

However, since the sleeve Is only 3/16 inches in diameter the distortion of 

the fields is expected to be small. 

C. Measurement Techniques 

Measurements of the parameters of the rectangular beam waveguide reson- 

ator were made using refleetometer apparatus. Figure 15-2 is a block dia- 

gram of the apparatus. The apparatus displays two patterns on the oscillo- 

scope. One pattern is the reflected power along the vertical scope axis ver- 

sus frequency f along the horizontal axis. The other pattern is incident 

power versus frequency. 

The system was calibrated as follows. With the waveguide switch elected 

and the incident power variable attenuator set at zero db the reflected power 

variable attenuator was adjusted to make the outputs of both of the coupler 

crystal detectors equal when monitored by the oscilloscope. Since the crys- 

tal« used were a matched pair, variations in the power output of tue oscillator 
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did not unbalance the crystal output readings. When the waveguide switch 

was opened the incident power to and the power reflected by the resonator 

were displayed on the scope. The displayed incident power was quite con- 

stant with frequency, varying by only + 0.3 db over the entire X band. 

The constancy was due to the action of the levelling feedback and to the 

very flat frequency response of the precision multi-hole directional cou- 

plers. 

The observed variations of the reflected power, denoted by P , with 

frequency can be used to obtain the values of all the important resonator 

parameters. In order to be certain that the response or Q curve obtained 

for a resonator is not being influenced by the method of measurement or 

some other external factors, a comparison of the measured and theoretical 

responses of the resonator is usually made. The theoretical frequency re- 

48 
sponse of a one port closed resonator is of the form 

Pc     «£ 
P    Q  Q 
o   ex xoo 2 f-fr 2 

r 

where P * power absorbed by one-port resonator 

P ■ incident power 

Q • loaded Q 

Q ■ external Q 

Q - unloaded Q 
\>o x 

f ■ resonator frequency 

f • any frequency near resonance 

48. J. Altman, Microwave Circuits, D. Van Nostrand Co., Inc., Princeton, 
N.J., 1964, p. 227. 
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This equation Is valid for a high 0 cavity with negligibly snail coupling 

losses. 

.«ow if at f ■ f , P » P then no power is reflected by the resonator at 

resonance and the resonator is said to be critically coupled. Thus, 

1 - 

f"f , c.c. 
r 

QE«oo 
(15-4) 

and hence 

f-f_\2 
c.c.  1 + <e& (15-5) 

It will be convenient to rearrange this equation in order to arrive at a straight 

line relationship between frequency and resonator response. 

r 

P o 
P c c.c. 

(f-fr)2 - 4 
< 

1 

p o 
p c 

- 1 

c.c. 

if.f i  _ JJL\\ 
!po 

 * 

- 1 
' *•   z^ypc c.c. 

Now P    ■ P    + P 
ore 

where P    - reflected power 

Therefore                     P           P 

P      x   P o           o 

and Eq. 15-6 becomes 

(15-6) 

(15-7) 
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Wm ^mm 

I"»'-* 
1 - 

- 1 

c.c. 

or 

*y* 
(15-8) 

- 1 

c.c 

Since £ and Q are not a function of frequency a plot of |f-f | versus 
V Ls IT 

-1/2 

c.c. 

should be a straight line. 

The reflectometer apparatus shown in Fig. 15-2 was used to measure the 
P 

on frequency. The frequency over which the oscillator dependence of — 

c.c. 
was swept was a small range around the n»o resonance. When the waveguide 

switch was opened the incident power to and the reflected power by the resona- 

tor was displayed on the scope. Readings of P I?  I    in db versus f were 

taken. The data was taken by leaving the reflected power variable attenuator 

set at its initial value and setting the incident power variable attenuator at 

some value, say x db. The two frequencies at which the reflected response 

curve crossed the straight line incident poer curve were determined by moving 

the wavemeter pip which was visible on the scope, to the two intersection 

points. At these two points, p— - xdb. Additional data of =— 
c.c. r 

versus 
c.c. 

f was obtained by changing the setting of the incident power variable attenuator 

and noting the two new corresponding frequencies. 

The data so obtained at critical coupling is then used to plot 

- 1 
c.c. 

-1/2 
versus f. If a straight line is obtained then the response ob- 

served is a true resonance. 
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Measurements can next be made of all the pertinent quality factors. 

The pertinent Q*s are: Q , Q , and QT. The definitions of these are, 
oo  O      L 

W8 
Q  - ü) — ; unloaded and uncoupled Q (15-9) 
QO       I     MT   

c 
w 

Q  ■ a) -—r-r— ; unloaded but coupled Q (15-10) 
c   co 

and 
W 

QL - «r p +?
b   + p ; loaded Q (15-11) 
co   ex 

where W - energy stored in resonator 

P - power absorbed by one port resonator 

P  - power lost in coupling network 
co 

P  » power lost in external circuit 

The actual values of the Q's were determined from the magnitudes of 

three measured reflection coefficients. They are 

IPJ -lliri U5-12) 
r 

I Pi        .. . 
where f is far from f (15-13) 

IPI V? where f is any f near f (15-14) 

These reflection coefficient magnitudes are the square roots of three values 

of thQ power ratio P /P which was just discussed. 

The equivalent circuit shown in Fig. 15-3 may be used to arrive at the 

49 
expression for Q in terms of p , p. and p.   The circuit is valid for a 

L* OX 

probe coupled resonator viewed from a position on the transmission line leading 

to th? probe which is called the detuned open position. The resistor K ac- 

counts for the power loss in the coupling and R accounts for the power absorbed 

by the resonator. It can be shown that 

49. M. Sucher and J. Fox, Handbook of Microwave Measurements. 3rd Ed., Vol. II, 
Polytechnic Press of the Polytechnic Inst. of Brooklyn, New York, N.Y., 1963, 
pp. 425-427, 451-455, 484-485. 
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TRANSMISSION LINE 

(a) 

CRITICALLY 
COUPLED 

UNDERCOUPLED 

OVERCOUPLED 

OFF 
RESONANCE 

• f. 

(b) 

FIG. 15-3. EQUIVALENT CIRCUIT AND LOCI OF REFLECTION 

COEFFICIENT FOR PROBE-COUPLED RESONATOR 
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QL - a — (15-15) 

where 

•■»^TM» a5-16) 

and f is the difference between the two frequencies at which 

|pj  is measured. 

When the probe-coupled resonator is overcoupled then 

% 2 
(15-17) 

(15-18) 

(15-19) 

(15-20) 

QL  2-|p0|-|p| 

and 

Qoo  1+lpll 

When the resonator ds undercoupled then 

% 2 
QL"2+|po|-|Pl| 

and 

%o i+iPi' 
\ "1+_^oT 

The overcoupled condition exists where p >0, and the undercoupled condition 

when p <0. 
o 

The validity of Eqs. 15-18 and 15-20 can be shown using the equivalent cir- 

cuit of Fig. 15-3. The reflection coefficient for a wave incident on the re- 

sonator at terminals a-b is 
Z-Z 

Ä _  o p" z?r 
o 

Since terminals a-b are at a detuned open position ahead of the probe, K.  must 

be greater than Z so that 

Rl"Z 

lpi' " vfz2 
1 o 

At resonance Z is equal to 

R.R 
Z-R^R 
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and hence 
R R 

- Z 

P« - 

R1+R   o  R1R-Zo(R1+R) 

0  RT5      " R.R+Z(R +R) 
—-— + z    l 

Rx+R   o 

As Indicated in Fig. 15-3, for the undercoupled resonator p >0, |p | • p since 

R. in parallel with R is larger than Z . Physically this means that the probe 

extends into the resonater only a small distance and hence is only lightly cou- 

pled to the resonance mode, and therefore the impedance seen at the terminals 

a-b is larger than Z . On the other hand if the resonator is over-coupled then 

p <0 so that jp | - - p . Thus both Eq. 15-18 and Eq. 15-20 can be rearranged 

and written as 

Rrzo 
Qoo 

X 

' Ri+zo 

\ 1 
R1R-ZQ(R1+R) 

'R^+Z^RJ+R) 

(15-21) 

Now Q  and Q can be expressed in terms of the elements of the equivalent cir- 

cuit,  rhus Q • h> L/Rpn where Rpn is the total equivalent resistance seen from 

the L-C terminals and hence 

and 

Therefore 

fa) L 
0    -           r 

»1+Z0 

fa) L 

»oo-i- 

%o              R!+Z0 

«L                  R 

R R+Z-R+R-Z- 

RJR+ZQR 
(15-22) 

Substituting Eq. 15-22 into Eq. 15-21 the following relation is obtained. 
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Rrzo 
R1R+Z0R+R1Z0    

+ R1+Z0 

R.R+Z.R   *    R.R-Z.(R,+R) (15-23) 

R1R+ZQ(R1+R) 

It is easy Co show that the left hand side of Eq. 15-23 is indeed equal to the 

right hand side and hence the validity of Eqs. 15-18 and 15-20 has beer, shown. 

However, before Eqs. 15-18 and 15-20 or Eqs. 15-17 and 15-19 can be used to 

determine Q  and Q , the coupling condition of the resonator, that is whether over- 

coupled ur undercoupled, must be known. The coupling condition for each resonant 

mode can be determined experimentally by making one simple measurement. There ar'» 

at least three different measurement techniques that can be used to determine 

the coupling condition. The one used here consists of substituting a slide 

screw tuner for the waveguide switch shown in Fig. 15-2. The tuner adds a shunt 

su8ceptance across terminals a-b of Fig. 15-3 and produces a reflection at this 

point. This reflection coefficient may be denoted by p . To make the measure- 
s 

ment, the tuning screw is extended far enough into the waveguide to alter the 

reflected power pattern on the oscilloscope. The reflected power and hence its 

truce on the scope *s dependent on the vector sum of the reflection coefficient 

p and the reflection coefficient of the resonator. The two reflection coeffi- 

dents are shown in Fig. 15-3. 

Now *f  the minimum power point on the oscilloscope pattern describes a 

circle in the clockwise direction when the tuning screw of the slide screw 

tuner is moved along the waveguide and away from the resonator, then the 

resonator is overcoupled.  If on the other hand the minimum power point des- 

cribes a circle In the counter-clockwise direction the resonator is undercoupled. 

When the resonator Is critically coupled the minimum pow»r point on the scope 

50. Sucher and Fox, pp. 450-451. 

210. 



«■i 

f. 

nas no circular motion when the slide screw tuner is moved. With the coupling 

condition known the values Q  and Q can be calculated from the measured re- 
oo    o 

flection coefficients. 

D. Comparison of Experimental and Theoretical Results 

The reflectometer apparatus shown in Fig. 15-2 was used to display the power 

reflected by the resonator versus frequency in the X band range. Sharp resonant 

dips were observed. The frequencies of the observed resonant minimums are listed 

Ln Table 15-1. The first eight resonant frequencies which appeared as the fre- 

quency was swept from 8.0 GHz upwards are listed. Not all modes were observable 

for certain probe depths. When the threaded sleeve was turned in to get tighter 

coupling, the perturbation caused by the sleeve projecting into the resonator re- 

sulted in resonant frequency shifts of the order of 5 or 10 MHz maximum. The 

resonant frequencies listed in Table 15-1 were all observed with the coupling probe 

in one fixed position except for the frequency of the n»o mode for which the probe 

depth had to be reduced. 

Mode Number 
n 

Measured Resonant 
Frequency 

GHz 

Calculated Resonant 
Frequency 

GHz 

0 
1 
2 
3 
4 
5 
6 
7 

8.975 
9.055 
9.115 
9.196 
9.259 
9.337 
9.407 
9.483 

8.975 
9.047 
9.119 
9.191 
9.263 
9.335 
9.407 
9.479 

TABLE 15-1 

Resonant Frequencies of Rectangular 
Beam Waveguide Resonator 

The measured resonant frequency of the n*o mode was not as close to the de- 

sign value of 9.0 GHz as hoped for. The reason for the discrepancy is that the 

value of z'(0), calculated from Eq. 14-12 or Eq. 15-2 was done with a slide rule. 
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When Che value z'(U) - 0.660 inches and n-o are used in Eq.   14-17 an accurate 

calculation yields a resonant frequency of 8.983 GHz.    However the tolerance on 

machining the resonator was    ± 0.002 inches.        If a maximum value of z'(0)-0.662 

is used in Eq.  14-17 the resonant frequency could be shifted as much as 10 MHz. 

Thus the theoretical or calculated value of the resonant frequency for the n-o 

mode listed in Table 15-1 could very well be 8.975 GHz.    Using the 8.975 GHz as 

a starting point and adding 72 GHz successively,  the seven resulting calculated 

resonant frequencies were obtained. 

The theoretical or calculated resonant frequencies listed in Table 15-1 de- 

pend on the value assigned to the ratio  (w /z )  at the desired resonant fre- 
o o 

quency for the n-o mode.  In the present case w -5 at f-9.0 GHz was used and re- 

sulted in a frequency spacing between modes of Af • 72 MHz. Now w does vary with o 

frequency and by using w -5 and f-9.0 GHz in Eq.  14-23 the value of D obtained 

is 15.0 and when used with f-9.5 GHz the new value cf w    - 15//9TT - 4.87.    The 
o 

change in w over the frequency range from 9.0 to 9.5 GHz is a negligible 2.6%. 

Thus the modes whose resonant frequencies lie in this range should be spaced by 

about 72 MHz. The eight measured value* of the resonant frequencies listed in 

Table 15-1 are very close to 72 GHz apart. The measured and calculated resonant 

frequencies compare favorably. 

—1/2 
The reflectometer was next used to measure [(P /P )|    -1]    at frequencies 

near the n-o mode. The measurements are plotted in Fig. 15-4. Since the points 

lie very nearly along a straight line, it can be concluded that true resonance 

was taking place. The resonator was evidently not being disturbed by the coupling 

scheme or by the measuring apparatus. The small deviations of some of the 

measured points from a straight line are probably due to some small measurement 

errors. 

The coupling loss and quality factors of modes n-o through 7 were measured 

by the reflectometer technique discussed previously. The results are shown in 
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Table 15-11. The first column of the table lists |p | , which is the coupling 

loss.  The probe assembly with rigid coax was used when the measurements listed 

in this table were made. Using the probe assembly with flexible coax created an 

additional coupling loss of about 0.2 db. For example the n»o mode value of 

|p.|  changed from -0.3 db to -0.5 db. Note also that the coupling loss increases 

somewhat at greater values of probe depth d, evidently due to currents in the 

probe.  But all the listed values of |p-|  indicate small loss. The coupling 

loss also may be inferred by comparing the measured values of Q and Q . In 

all cases Q is only slightly less than Q , indicating again that the probe 

coupling loss was small. The values of Q  are all very close to about 3300. 

Recall that the theoretical Q  is given by Eq. 14-35. The values which 
oo 

must be substituted in the equation for the case of the resonator are: X - 3.33 x 

—2 6 —2 
10 m., 0 - conductivity of brass - 16 x 10 mhos/m., h - 0.98 x 10  m. Calcu- 

lations then give Q  * 3350. Thus the predicted Q  agrees very well with the 

nine measured values shown in Table 15-11. 

The values of Jp |  listed in Table 15-11 are the measured power reflection 

coefficients at resonance. The theoretical values can be found using Eqs. 14-49 

and 14-50. Since He (0) - 0 for n odd, Eq. 14-49 gives R - 0 for n odd. There- 

fore the theoretical value of |p |  is unity (-0.0 db) for n odd for all probe 

depths d. These modes can theoretically never reach the critical coupling con- 

2 2 
dltion |p |  ■ 0.  But the table shows that experimentally jp |  can equal zero 

for n odd. 

This disagreement is probably due to slight asymmetries which exist in the 

resonator due to fabrication tolerances. The probe is evidently not exactly at 

x - 0. Also, the curved surface z - - z'(") is evidently not perfectly symmetric 

about x ■ 0. 

More satisfactory agreement between the coupling theory and experiment is 

found in the coupling to the even numbered modes. Equation 14-51 can be used 
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to predict the probe penetration, d, required for critical coupling of the even 

numbered modes. The value of ZQ,  which is the characteristic impedance of the 

coaxial feed line, is approximately 50 ohms. The value of u  for the various pn 

■odes can be obtained from Eq. 14-53.    The values of He (0) needed in Eq. 14-53 

can be obtained from Figs.  14-3 through 14-10.    The value of u    for the resonator 

used in the measurements is 11.9/metero      Thus 

u     - 11.9^57r- 9.50/m. po 

u , -  (11.9/2)^7^"- 4.75/B. 

Up4 '^^^h - 3.56/m. 

The value of u     plus the known values of the other variables when put in Eq. 14-51 po 

yields a probe penetration d - 0.52 mm for critical counting.    This value is reason- 

ably close to the experimental value of approximately one millimeter given in 

Table 15-11.    No precise measurement of probe depth was warranted because of the 

perturbation Introduced by the sleeve of the probe assembly. 

The value of |p  |    for the n»2 and n«4 modes when the n-o mode is critically 

coupled can be determined with the aid of Eq.  14-51 and the value of u      for the "* ""■ po 

n-o mode.    Thus 

50 - K (9.50) 

where K is a constant and equal to 5.26.  Now for other modes Eq.   14-48 yields 

R   - K u n pn 

and hence 

Rj - 5.26  (4.75) • 25 

and      R4 - 5.26  (3.56) - 18.75 

The reflection coefficient p    is o 

R    - 2 n        o 
P. o      R   + Z n        o 
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Thus p = - 9.5 dB 
n-2 

and 

%2 . - - 6.8 dB n«4 

The measured values in Table 15-11 are -7.2 dB and -4.0 dB respectively. While 

2 
there is only f dr agreement numerically for the values of p and the error is 

probably due mcstly to the assumption of an infinitely thin probe, the theory 

does correctly predict the order in which modes will critically couple. In- 

creasing the probe depth from zero the theory predicts that the first five modes 

will become critically coupled in the order 0, 2, 4, with 1 and 3 simultaneously 

becoming critical last. Even for a fixed probe depth the value of p indicates 

the order in which critical coupling would take place. Table 15-11 shows the 

order to be 0, 2, 4, 3 and 1. The fact that 3 is ahead of 1 is probably due 

in part to experimental error. In conclusion the experimental observations on 

the probe coupling are in good agreement with the theoretical predictions. 

The only remaining topic is the reactance of the probe and its possible 

effect of shifting the resonant frequencies. Since the experimental resonant 

frequencies agree very well with those calculated by Eq. 14-17, the frequency 

shift due to probe reactance is negligible. Therefore the subject of probe re- 

actance will not be dealt with in detail. 

The study made of the rectangular beam waveguide resonator revealed that it 

behaves in a manner very similar to other waveguide resonators. The design of 

the rectangular beam waveguide resonator was straight-forward. The length of 

15 inches on each side of center in the x-directinn for the resonator is probably 

longer than necessary and in future designs it could be made considerably shorter. 

The actual fabrication of the resonator presented no serious mechanical problems. 
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The measured response curves for the resonator proved to be true Q curves. 

This means that the resonator »as not being affected either by the method of 

measurement or by some other external factors. The reflectometer apparatus 

used for these measurements also served to measure all of the other important 

parameters of the rectangular beam waveguide resonator. 

The conclusion to be drawn from this study is that the rectangular beam 

waveguide resonator behaves as predicted by the theory developed. The mea- 

sured values of the resonant frequences, the Q's, and the various reflection 

coefficients agree closely with the theoretical values. 

XVI.  THEORY OF THE RECTANGULAR BEAM WAVEGUIDE ANTENNA 

A.  The Cavity-Backed Antenna 

The fact that the n=o mode of the rectangular beam waveguide resonator 
2 2 

has fields with the Gaussian distribution E = u E e °  suggests that it can 

be transformed into a narrow beam antenna. The transformation would consist 

of introducing an aperture along the x axis through the metal wall at z=o to 

couple the resonator fields to free space (see Fig. 14-2). The antenna so 

constructed is here given the name rectangular beam waveguide antenna. 

Since the antenna aperture is backed by the resonator, the antenna is a 

type of "cavity-backed" antenna.  In general the cavity-backed antenna must have 

an aperture which is large enough so that most of the input power to the ca- 

vity resonator is radiated into free space, yet not so large that the resona- 

tor field configuration is destroyed and hence also the desired antenna pat- 

tern. Such an antenna has reasonably high values of both radiation efficiency 

and Q. The bandwidth of the cavity-backed antenna is generally smaller than 

that of other types o. antennas since its bandwidth is controlled by its Q. . 

The familiar relation is that the bandwidth, Af - f /Q.. 
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A few types of cavity-backed antennas have been discussed in the litera- 

ture.  Jacobsen et al. have presented an antenna backed by a regular wave- 

guide cavity.   The aperture in this case consists of many circular holes. 

The diameter and number of the holes determines the magnitude of the coupling 

to free space.  Jacobsen et al. stress the point that any cavity-backed antenna 

has an advantage over other types of antennas because the phase of the aperture 

fields is constrained to be uniform by the cavity.  The uniform phase eliminates 

phase error, thereby eliminating corresponding irregularities in the radiation 

pattern. 

Instead of using holes, a slot can also serve as a coupling aperture, as 

52 
in the cavity-backed antenna discussed by Adams. " Slot coupling in the rec- 

tangular beam waveguide antenna can be accomplished by cutting an opening in 

the z-o wall that extends from y = - w/2 to +w/2 , with a slot width w of the 

order of a few thousandths of an inch, and from x » -L ll      to +L /2  where 
s        s 

the slot length L is nearly equal to the length L of the resonator.  Such a 

slot simulates a line source of fields along the x axis from -L /2 to +L 11 
8 S 

The radiated field from such a continuous line souce is proportional to its 

Fourier transform. Since the Fourier transform of a Gaussian source distri- 

bution is a Gaussian, the radiation pattern cf the antenna excited in the n-o 

mode of the resonator can be shown to be a narrow beam Gaussian in the xz 

plane. The radiation pattern in the yz plane of the line source is a circle, 

that is, it is omnidirectional.  The magnitude of the slot coupling from the 

resonator to fv -e space will depend on the slot width w.  The larger w is, 

the larger the coupling will be. The coupling will also be affected by the 

51. S. Jacobsen, E. Andersen, and M. Gronlund, "An Antenna Illuminated by a 
Cavity Resonator", Froc. IEEE, vol. 51, November 1963, pp. 1431-1435. 

52. A.T. Adams, "Flush Mounted Rectangular Cir'f Slot Antennas — Theory 
and Design", IRE Trans, on Antennas and    * ;ation, vol. AP-15, May 1967, 
pp. 342-351. 
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thickness t of the metal wall in which the slot is cut. 

An important effect of either the slot or the hole coupling in the ca- 

vity-backed antenna is an increase in the power loss above that of the one- 

port resonator.  The power loss increases because power is now radiated into 

free space by the antenna aperture. Another effect of the aperture coupling 

is a possible change in the resonant frequency. 

B.  Equivalent Circuit of the Rectangular 

Beam Waveguide Antenna 

The equivalent circuit of the rectangular beam waveguide resonator coupled 

to a source by a probe, was presented previously and is the circuit shewn in 

Fig. 15-3. If the resonator is to form an antenna, then a second port through 

which the energy to be radiated can leave the resonator must be introduced. 

When a second coupling port is created which can be either a slot or holes 

used as an aperture then the equivalent circuit of the one port resonator 

must be modified. 

When energy is coupled out of the resonator by a slot along the x-axis, 

the beam mode incident on the slot is approximately a nlane wave with E in the 

y-direction. It can be shown that the impedance presented to a plane wave with 

its E field across the slot will be a resistance R in parallel with a capaci- 

53 
tance C .  The capacitance implies "hat the coupling is of the electric-moment 

8 

type which is the same type of coupling obtained with a probe. A resonator with 

input and output coupling of the electric type has been shown to have an equiv- 

alent circuit consisting of a series RLC resonant circuit in series with the 

54 
coupling port impedances.  Thus the equivalent circuit for the slot coupled 

rectangular beau waveguide antenna is as shown in Fig. 16-1 where Z is a resis- 

tance R in parallel with a capacitlve reactance 1/jB . 

53. R.F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book Co., 
New York, N.Y., 1961, p. 183. 

54. G.  Goubau, Electromagnetic Waveguides and Cavities, Pergamon Press Inc., 
New York, N.Y., 1961, p. 514. 
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When the output coupling impedance Z consists of a parallel con,binat,on 

of a resistance and capacitance, then the circuit of Fig. 16-1 is no longer a 

simple series or parallel resonant circuit of R, L and C.  The impedance at 

the input coupling port, that is, at the probe indicated by the termi'ials a-b 

in Fig. 16-1 is 

1   (Ra)("l/Ba) Z(») = R+juL - JL +  ' de-D 
a J a 

2 
R R B      . 

2(U) - R +  §  + j [wL - —
a-2 ±-] 

1 + (R B )2 1+(R B )  WC (16-2) 

or 
a a a a 

Z(ü)) = R' + j   [uiV   - ^] (16-3) 

Ra 
where R' « R + — 

and L' - L - -a-a- 

1+(R B )2 
a a 

R2B_/(D 

~2 
1+(RB) 

a a 

Thi3 impedance Z(u) is of the same form as the Z(u>) of the original series cir- 

cuit resonator (Eq. 16-2 with R =0) if R' and L' can be considered constant. 
EL 

Now for A  C noc too much larger than 1/u or L/R , and for a range of w from 

about 0.9u) to l.lui, L' and F' can be considered approximately constant and the 

slot coupled antenna should exhibit an input impedance very similar to that ob- 

tained for the one port resonator.  The slot antenna will of course have a dif- 

ferent input resistance R' at resonance and a different resonant frequency to . 

The resonant frequency must satisfy the following condition. 

to « ==s 
r A7c 

or 

(16-4) 

r F7: a 

(I/RW) 
r   a a 
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Thus Eq. 16-4 shows that the new resonant frequency is higher than the re- 

sonant frequency w « ifix  of the original one port resonator. Solving for 

tu from either Eq. 16-2 or Eq. 16-4 gives, 

2 B C 
w LC - to     a 

r (1/R2+B
2) 

a a' 
or 

* , /    B2 a      1/     a    1 
Ur " 2L(1/R2+B

2) + 1/4L2(1/R2+B
2) + " (16"5) a a   |      a a 

Under the stated assumptions the final equivalent circuit and the original 

equivalent circuit behave similarly except that the final circuit has new 

values of R and L.  The Q's will be lower since power is being radiated from 

the coupling aperture. The Q's for the antenna are given by 

(16-6) 

W 

oor 
s s 

r P     . + P rad        c 

W 

V = u                   s 

r P    . + P   + P rad        c        co 

Q.   - u Lr      r 
P  . + P+P  + P . 
rad   c   co   exl 

where Q   ■ unloaded uncoupled Q with radiation 

Q   = unloaded Q with radiation 

Q.   » loaded Q with radiation 

W   * energy stored in resonator s 

e , * power radiated 
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P  - power dissipated in walls or absorbed by resonator 

P  - power lost in coupling probe 

P  - power lost in external input circuit 

When these Q's are known, important parameters such as antenna efficiency 

T can be calculated. The antenna efficiency is defined as follows: 

T - l£?i J34  (16-7) 
P Pj + P+P+P KX      ' o rad        c        co       r 

where r is evaluated at resonance 

P ■ power incident on resonator 

P » power reflected by resonator 

The value of r should be as near to one as possible. Thus the case of a criti- 

cally coupled resonator is of interest since then P ■ 0 and 

ric.c. ■ p A?i +p <i6-8> ' rad        c        co 

If an external Q at port 2  (output port) is defined by 

Ms 
Qex2 " "r P~ dO-9) 

rad 

tnen 

rlc.c.      Q~T (16"10) x
ex2 
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However the following is also true 

-J 1 1 
loo Qe*2      «oor " «- (16"U> 

W 
where Q      ■ u   -r— as previously measured. 

c 

Then 

lector ((T--<r] a6"U) 1
 VMoor     xoo'' 

Thus  from the three measured Q's given in Eq.  16-12 the antenna efficiency 

can be determined. 

The validity of Eq.  lb-12 may be checked by assuming P^ - 0.    Then 
co 

Q     • Q and or      \>or 

r|       -Q      Li Ü 
c.c.      xoor  IQ Q 

oor      ^oo' 
(16-13) 

c'c- Qoo (16-14) 
N_ .    -l-^°r 

P    + P     . - P 
H ._£ £5* c 

c.c. P   +P    . 1 c        rad 

When the coupling is critical 

R 
R    + * 

8      1+(RB)2 ° (16-15) 

a a 

and hence 

P     , + P    - P    , 
rad        c        exl 

thus 
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r 
4P ,P .    4P .P , 

exl rad      exl rad 
c,c'  (P .+P .)2  (P  .+P +P ,)2 

exl exl      rad c exl 

which is a familiar formula. 

Since critical coupling to the resonator is a desirable condition it 

may be of interest to calculate the probe depth required. A theory was pre- 

sented in a previous section (Eq. 14-49) which predicts the required probe 

depth for critical coupling of a one port resonator. The formula was de- 

rived using several approximations, the most important of which was that the 

coupling loss P  is negligibly small. The formula can be made valid for 

the case of the two-port resonator by simply changing Q  to Q  . Hence 

for critical coupling d, the probe depth, must satisfy 

<>    tan2 ^ Re2(0) 

O     0)      „    A      . 
o  k2eh o «!. j 

4  u   2 
o 

where d - depth of probe 

n ■ mode number 

h ■ height of resonator 

k * wave number 

X    - free space wavelength 

He * Hermite polynomial 

55. J. Altman, Microwave Circuits, D, Van Nostrand Co., Inc., Princeton, N.J. 
1964, p. 247T 
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Since Q   is smaller than Q , it is obvious that after port 2 has been oor oo 

introduced the probe depth d must be increased to maintain critical coup- 

ling. 

C. The Slot Aperture 

1.  Radiation Field of Infinitely Long Slot Antenna 

The equation for the radiation field produced by the n*o mode of a 

slot antenna will be derived. The slot of the rectangular beam waveguide 

antenna opening onto the z«o ground plane is shown in Fig. 16-2.  The re- 

sonator is in back of the slot and extends from z=»o to z ■ - z'(x). The 
n 

width of the slot is w and the length is L .  This section of the report 

will consider the slot length L and the resonator length L is to be in- 

finitely long. 

The far field or radiation pattern of an aperture is generally deter- 

56 mined by taking the Fourier transform of the field incident on the aperture. 

Thus 

-1kR 
E ■ 1(u0sin<J>fu.cos8co8<» —r^— • 

/ / E (XfV,o)eJH8in«sin*y+sinecos4>x) dxdy (16-20) 
y x y 

This equation is accurate provided the aperture extends at least several 

wavelengths in both the x and y directions. Only the n»o mode of the rec- 

2  2 —      — u x tangular beam waveguide resonator, which has a travelling wave E - u E e 0 

will be considered.  Then Eq. 16-20 can be written as 

_ _ _ -IkR 
E - 1(uasin<J*u.cosecos<}>) ~— E I  T (16-21) 

V <p AK        o y x 

56.  J. Brown, "A Theoretical Analysis of Some Errors in Aerial Measure- 
ments", Proc. IEE, Vol. 105C, February 1958, pp. 343-344. 
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w 

where Iy - / \ eJk8in68in*y dy (16-22) 

" 2 

ha 
2 

2 2 
J T /• ~u x -9-jksin6co8$x   . ,,,   0,x and I    - /    .     e    o      J dx (16-23) x L 

8 
2 

The integral I    can be evaluated by first completing the square in its 

exponent which yields i 

iA<  2«    .A//  2    T"     -lu x-J(ksin6cos*/2u )J2   . ,.,   0.. 
T -k sin 6cos $/4u   /        e      o    J o *    dx (16-24) 1    ■ e o        L 
x 2?. 

~ 2 

Npw I    Is easily found since for the present case L    is taken as Infinite, 

. /7   -k sin 6co8 $/4u 
*x " u~ e ° (16-25) o 

The width w of the slot in the antenna under discussion is much smaller 

than the wavelength X and hence the integral in Eq.  16-22 is not valid.    Thus 

Eq.   16-21 becomes 

7      ./"   <  ^T       r      ±\ e"JkR .    SK    -k2sin2ecos2*/4u2 (16-26) E - J (UgSinf+u cosecos*) —— I    — e o 
y   o 

where I    is a function of w yet  to be determined. 

The power density S at a distance R from the antenna is found by taking the 

absolute value of the Poynting vector 

S - I x H* 

    eg 
where H - (1/n) u_xE and n - 377 ohms.    Then 

2 2 

|g|  . !fLL- (sinVcoa2ecos2*)  e-k2»ia29co.2*/4u2 (16.27) 
X R u n o 

57.    J.  L.  Powell    and B.  Crasemann, Quantum Mechanics. Addison-Wesley Publishing 
Company,  Reading, Massachusetts,  1961, pp.  475-476. 

58.    Reference in footnote 56, page 344. 
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The functional dependence of S on 6 and ♦ is apparent and results in the 

radiation pattern of the antenna at some constant distance R fro» the 

antenna. 

The gain G of the antenna is given by the equation 59 

1. 
2   8 

If, E dx 

A-* -A 

ft  i iL (16-28) 

L»/     |E|2 dx 

2 8 

which applies for a line source radiating into all space.    Since for the 

antenna under discussion radiation is into half space only the gain must be 

aultiplied by 2 giving the following formula for the gain: 

>£ 
2 a 

'-h 
E(x) dx|2 

C - *       2 • 
A 1. (16-29) 

2*8 

j      |E2(x)|dx 

2~s 

Now for the n*o mode and L   ■*«• 
s 

59.    T.  T.  Taylor,  "Design of Line-Source Antennas for Narrow Beanwldth and Low 
Side Lobes",  IRE Trans, on Antennas and Propagation, Vol.  AP-3, January,  15*55, 
p.  24. 

230. 



G - - 

I 2 2        )2 
iEoe    °        <* 

*        -.,22 (16-30) 
/ES"

2
V    dx 

and 

G-A/2T 
Auo (lb-31) 

Ihe gain is related to the total power radiated, P^, and the maximum 

Value Smax«  Jf S(9'*) of **-  l6-27 in the  following way. 

4wR2S 
Q m  max 

Prad <16~32> 

The value of P^ can be obtained from 

P     . - ?,    T 
rad        inC (16-33) 

where P^ - power incident on slot 

and T - transmission coefficient of slot and must be determined. 

The value of P^ for the antenna under discussion is 

w 

1    2    "    7      ■> 2 2 
P*-"n'w^

Eo*    V    <*<* (16-34) 

n    o u   12 inc      n    o u   ¥2 (16-35) o ■ 

Thus P     ,  is rad 

E2 

(16-36) 
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The transmission coefficient T as a function of slot width has been de- 

termined exactly for a capacltive (¥ transverse) slot in an infinitely thin 

perfectly conducting plane by Morse and Rubenstein.    Their determination, 

together with quite accurate varlational approximations, has been used to 

plot tue graph of TW/X versus w/A shown in Fig. 16-3. 

An expression for I is now possible since the value of Tw is available 

from Fig. 16-3. Using Eqs. 16-31, 32 and 36 the value of S   can be written 
max 

s      - -±-r <-M/?TW> (-*- /Ü) 
maX      4*R2      Uo'2 

E2 Tw 
s.ax - "fxr <16~37> 

nAu R 

Comparing Eq.  16-37 with Eq.   16-27 it is evident that 

I    -  /TwA/ir (16-38) 

Thus the complete expressions for E and S are 

8-J
kRJr7   -t 

u R   fX      e 

2 ,  2„      2xl,   2 

and 

T      ,c r   j   o/T        «      ^ e J     jTw     -k sin 0cos */4u (16-39) t - jE (u_sin$+u.cos6cost) —"S~l7~   « o o    o a u r o 

2 

c        
Eo ^  ,  .  2^      2.      2A,    -k

2sin26cos2*/2u2 (16-40) S - —5~2~" (sin ^eos  8co8 ♦) e T      o 
»Run o 

60. P. Morse and P.  Rubenstein,  "The Diffraction of Waves by Ribbons and Slits," 
Physical Review, Vol.  54, December 1, 1938, pp.  895-898. 

61. J.  N. Miles,  "On Che Diffraction of an Electromagnetic Wave through a Plane 
Screen," Journal of Appl.  Phys., Vol.  20, August,  1949, pp.   767-768.    See 
also R.  F.  Harrington, Time-Harmonic Electromagnetic Fields. McGraw-Hill 
Book Co., New York, N. Y.,  1961, pp.   370-371. 
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where Tw/A is obtained from Fig. 16-3.  Equation 16-40 des cribes a radiation 

pattern shaped like a thin "pancake" lying in the yz plane with a maximum val- 

ue at either 0=0 or $ * ±  n/2.  The pattern in the xz plane, for which cos<f> - 
2  2   2 

I, is proportional to cos 6e o and is essentially a Gaussian pat- 

tern.  The polarization of the radiated field can be determined from F.q. 16-39. 

For example, for <J>«0, the field is polarized in the u. or u direction. 
<f    y 

The value of the Q of the rectangular beam waveguide resonator as a func- 

tion of the radiated power can also be determined from the foregoing equations. 

Thus Eq. 16-36 which gives the total power radiated can be used to predict the 

value of Q   which is the unloaded uncoupled 0 of the resonator.  Recall that 
oor 

the external Q at the output or radiation port of the resonator is given by Eq. 

16-9, 
W 
s 

and 

ex2   r P  . 
rad 

W ■ c / E2dV 
s   o 

V 

where F is the r.m.s. value of the total electric field. 

The value of E for the n  mode is given by 

2 2 , 
E «   |EJ   - 2E He  (2u x)e~u°x sin   (~~ z) (16-41) n    n      o A 

where E    is  the r.m.s.  amnlttude of the  travelling wave of the n n 

mode.     Thus 
2  2 » 2 -2u x A t f  (2E )     He   (2u x)e      o* dx b~ 

o n n      o 4 —oo 

O    - - fc)     , -^  (16-42) 
6X2 ° E2 »2 -2u2x2 

n _    ,   He  (2u x)e      o    dx — Tw /       n      o n       -°° 
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FIG. 16-3. TRANSMISSION OF A PLANE WAVE NORMALLY 
INCIDENT ON A CAPACITIVE SLOT 
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where h is the Inside height of the resonator. 

Simplifications yields 

0      kh 

ex2 - TWI <16"*3) 

where k is the wave number. 

With the value of 0 _ known the value of 0   can be determined from Eq. 
ex2 oor 

16-11.  Note that 0   in Eq. 16-43 is independent of mode number. 

2_. Radiation Field of Finite Length Slot Antenna 

A practical antenna will have a finite length.  The slot length L in 

the x-dtrection will tvoically be such that u L is between 3 and 10.  If the } os 

integral  I     in Eq.   16-24  is  evaluated  for a  finite slot   length L    a new val- 

ue  for S and hence a now radiation pattern will  be obtained. 

Transforming  Eq.   16-24 by  letting  a-u x-jksinecos^/2u 
o o 

62 

(16-44) 
-Y-jX 

where X » ksin0cos^/2u (16-45) 
o 

and Y = u I. /2 
o s 

Now from Cnuchv's residue theorem of complex analysis, since e   has no 

singularities, 

i _ ? 
e  da = 0 

(16-46) 
C 

where  C Is  any closed  contour  in   the  complex  plane.       Thus 

^Y-1X +Y-1X ,o 
' -a f -or 

a      da +     / e      da + 

/ -Y-jX ^Y-jX 

62. This radiation pattern has very recently been mentioned in the literature. 
See T. C. Lee and .1. H. Zook,  "Light Beam Deflection with Electrooptic 
Prisms," IEEE Journal of Quantum Electronics, Vol. OE-4, July, 1968, pp. 
442-454. 
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or 

'+Y"JX    2 /°      2 /Y'1X-a2 
e"a da    - -     /    e~a da    _      / e ° do (lfi-&7) 

'-Y-JX y+Y-jX 

Similarly 

-a2 / 2 

e ° da    +     /     e"0 da    - 0 

Z+Y-jX 

■+Y-JX „o 

/ 

Y-jX 1 

e-°2da    -  (Y-JX)     /    e-(Y-JX)2e2dß 

- Y I1 e(-Y2+x2>*2
eJ2™2

d6 o 

or 

- JX f1^2™2)*2 eJ2XYß2 dß 

,Y-jX 1 

e-°2da    -Y|     e(-Y2+x2>^co.(2XYe
2)dP 

+ X  /     e("Y +X )ß   8in(2XYß2)dB 

/ o 

(16-48) 

(16-A91 
-a2 / 2 

e      da    - -     /       e"a da 

Z+Y-JX 

Thus 

,+Y-JX +Y-JX -Y-jX 

e~° da    -     / e"°    da    -     / e-0 da (16_50« 
-Y-JX /o 

To simplify further,  let 6 - a/(Y-JX).    Thus 

(1*-*!) 

1 1 

+ jlY/  e(-Y2+x2>P2sin(2XYß2)dß-X / ,<-AAB2 

cos (2XY6" )<..>) 

236. (]6-52,; 



Thus lc is clear that changing the sign of Y will just change the sign of the 

real component of the integral on the left side of the equation. Changing the 

sign of X will just change the sign of the imaginary component of the integral. 

Thus 

-Y-jX 

_-a 
e  da . - Re 

<-Y-JX 2 

e  da + j Im 

Y-JX , 

e  da (16-53) 

The expression for fe  in Eq. 16-44 becomes with Eqs.  16-50 and 53 

1     -x* 
\   - f e Re [2 

•+Y-JX    2 

e      da] 
(16-54) 

Let t - ja 

1     -X2 /X+-1Y^2 Ix  ■ — e        Re[ 
o 

'o 

dt] (16-55' 

Further set z - X+jY 

Ix - — e"X Re 
o 

.-■'♦«•-VA 
+ A 

i Tables are available that tabulate functions u and v that are defined by 

.2 , J 

63 

Thus 

but 

u+jv-e"2 +j-^e"Z/V dt 

T   &    -X'  ,  z2 
*x * — e   Refl-e (u+jv)] 

o 

e*
2 . e(X+jY)

2_ eX
2-Y2( 

cos2XY+1sin2XY/ 

(16-50) 

(16-57) 

(16-58) 
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Hence 
r      ..2 Jl „2 

Ix - ~ e"A  {l-ReleX "Y (cos2XY+jsin2XY)(u+jv)]} (16-59) 
o 

or 

/7    _v2 v2_Y2 

I    - — e '      fl-e (ucos2XY-vsin2XY)] (16-60) 
o 

liquation  16-60  is  the   final   result   for  T   .     If Y-u L /2  is  nl lowed  to approach 
x OR 

infinity then 

I    rr~» — e"       [l-e~°'(ucos2XY-vsin2XY) 
x Y <■'"  u ' 

o 

Tallies of u and v  indicate  that  they remain  finite even   for vcrv  larp.e Y and 

thus 

—► —n~    ~X" 
x T£ U    e 

o 

This agrees with Fq. 16-25 for the antenna with an infinitely long slit. 

The value for I Riven hy Fq. 16-60 will modifv the expression for S 

Riven hy Fq. 16-40. The new expression for S is 

K~Tw 2    2 2 
S - °0 , (Rin2*+cos26cos2<j) e"2X (l-eX ~Y (ucos2XY-vsin2XY)]2     (16-61) 

XT. u n o 

Titus the radiation pattern is changed somewhat due to the finite length of 

the slot L . Other antenna characteristics are essentially unchanged.  Fiuation s 

16-31 for C.  and F.q. l*-43 for 0   are still accurate provided I. is such that 
ex2 s 

u I. ranges over tvpical values from 3 to 10. os r 

3.  Fresnel Field of Antenna 

It is Important, for purposes of measurements and tests, to know the 

distance from the antenna at which the radinLion (far) field Riven hy Fq. 16-21 

begins. This distance can be estimated by examining the Fresnel field of the 

antenna.  Instead of usinp the approximation implicit in Fq. 16-20, i.e.. 

238. 
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rl   *   R- xsinOcos<f> (16-62) 

the more exact  Frosncl  approximation will  be used.     Thus  from Fig.   16-2   it 

follows   that 

rJ|       =   R2+x2-2Rxeosi|> (16-63) 

but  cosi)/ =   (x  component of  R)/  R «  Rsin9cos#/R (16-64) 

2 2    2 
thus r      =* r +x -2Rxsin0cos$. 

64 The   Fresnel   approximation  is 

x2 2 2 
r=R-xsinOcos<«> + |^ (1-sin 9cos $) (16-6 5) 

9 
and when squared is equal to r ' except for negligible terms of the order 

r  3-1     4-2 of x R  and x R 

Kquation   16-21  can be modified  to express  the  Fresnel  field Instead of  the 

2 
far field onlv,  bv addinp, the x    terms of F.o.   16-65 to  the exponent,  thus 

-jkR 
K ■   j (u.,sin<(>+u.cos0cos((i) —r-=— E  . 

Ö <f> A K O 

w s 
^ ST 
/ /         L ..    w y        s 

(u2+j ^ (l-sin26cos2<J>))x2  1k(sin6cos<J>x+sinesin*v) 
y    w y    L- s 

V     B      ■>     . 

2 
(16-66) 

This can be rewritten as, 

- ~ikP    rj\? 
F. =   KupStnHiyrosOcoa«) ^j— E^g Ixf (16.67) 

-jkR 
F. =   HUpSindffu cosOcos*) - 

here 
i. 
s 

2J.4 L. ,i__.,_2A___2.%%   2   ..    .   . 
(16-68) I      - / e"(uo+1  2R  <1_sin 0c°s  *))x2 jksinecosix 

J.hi 

64. R. C. Hanson, Microwave Scanning Antennas, Vol. 1, Academic Press, Nev York, 
N. Y., 1964, p. 26. 
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Now I  has been examined for L ■ •», in which case it has the value, 
xf s 

T               /ir" -k2sin"0cos2$/(4u2(l+1b)) (16-69) i      « — e o 
xr      u /l+jh 

o 
2 2 2 where b ■ defocusinp ratio ■ k(]-sin Ocos 4>)/2Ru  . 

o 

For   |e|   less  than about 20°,  b  is approximately constant  and equal to k/2Ru". 

The  Fresnel  integral  I       for   |e|   < 20°  is  therefore a Caussian  function but 

with a greater standard deviation than  the  far  field  function I   .     However 
x 

for b<0.I  the  function I   , has  approximately the same standard deviation as 
xf 

I .  Thus the distance R»R for which b=»0.1 mav be taken as the border or edge 
x m 

of the far field.  At a distance from the antenna smaller than ?.    the power or 
m 

field squared pattern, which is proportional to the square of I ,, is broadened 

(defocused) but remains Caussian. 

D.  Aperture of Closely Spaced Holes 

1.  Comparison with the Slot Aperture 

An alternative to the slot aperture is an aperture consisting of a row of 

circular holes spaced along the x axis.  This type of aperture coupling results 

in discrete sources rather than the continuous lino source of the slot.  Thus 

the radiation pattern of the holes is in general not found bv taking a Fourier 

transform.  Instead, assuming an infinitely thin wall in which the coupling 

lilies are placed and an incident field that is uniform over a given hole, each 

hole can be treated as a magnetic dipole directed in the x-direction.    If 

there were no coupling between the hole?, then the strength of each dipole 

would be proportional to the field incident on the hole fror* the resonator. 

65. II. A. './heeler, "Antenna Ream Patterns which Retain Shape with Defocusinp." 
TRF Trans, on Ar.tennas and Propagation, Vol. AP-10, September 1962, pp. 
5 74-575. 

66. I!. A. Kethc, "Theory of Diffraction of Small Holes," Physical ?eyley. 
vol. 66, nos. 7,8, October 1, 1944, pr>. 1K5, 171. 
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Tn sucli a case the strength of the dinoles woulti follow a Caussian distribu- 

tion for the n=o mode in the resonator.  The radiation pattern of such an ar- 

ray of dipoles is easily calculated usinr, antenna array theory.  The appropri- 

ate formula is for an array of dipoles of constant phase positioned along 

the x axis: 

E ,(0)<HV1kXlCOs0 +n eJkx2C08fl + ... + DMe-
1kxNC°8° (16-70) 

ran    i I N 

where I) = dipole strength of the n  dipole 
n 

x = position of the n  dipole on the x axis 
n 

K  .(") = radiation field intensity as function of 
the angle 0 in Fig. 16-2. 

For example, for holes spaced every half wavelength from x ■ Ü to x » 

*(1/2)L = ± 14", the radiation pattern was calculated using Eq. 16-70 on 

an IBM 1620 digital computer. The pattern obtained is very similar to the 

Gaussian pattern obtained for slot coupling except that sidelobes appear 

which are approximately 60 db below the pattern maximum. 

Coupling between the dipoles does exist, however, and will affect the 

power radiated by each dipole.  Each dipole will radiate a power proportional 

to both the field strength inside the resonator and the field at the front of 

the hole produced by the other dipoles of the array.  Thus it is difficult to 

say without further detailed analysis whether or not the power radiated bv the 

dipoles still follows the Caussian distribution which results in a narrow beam 

antenna.  Since both the hole size and the number of holes used in the array 

can be changed, a large variation in the coupling is possible when hole coupl- 

ing is used.  This coupling variation will prove to be an important advantage 

over the slot aperture. 

67.  E. C. Jordan, Electromagnetic Waves ami Radiating Systems, Prentice- 
Ilall, Inc., Englewood Cliffs, N.J., 1950, p. 402. 

241. 



A certain snecial case of hole aperture coupling can be analyzed without 

great difficulty.  In this case the holes are all of constant diameter and are all 

spaced as close as possible alongside one another on the x axis.  It is customary 

to calculate the radiation pattern in this case assuming the coupling to be 

uniform along the entire length of the holes.  An example of such a calcula- 

68 
tion is given in the paper by Jacobscn et al.   Thus a row of closely spaced 

holes can be considered as a line source as far as the radiation pattern is 

concerned,  Hence the radiation pattern and gain G calculated in the previous 

section for slot coupling apply also for the special case of hole coupling 

treated here. 

Jacobsen also shows that the equivalent circuit of a cavity-backed antenna 

with hole apertures is of the form of Fig. 16-1.  He also shows that B is rega- 
a 

tlve, and thus F.q. 16-4 predicts a decrease in the resonant frequency rather 

than an increase as was the case for the slot.  The values of B and R deter- 
a     a 

mine the transmission coefficient T for the hole apertures as derived in the 

next section. 

2.  Radiation Field of Hole Aperture 

The transmission coefficient and the corresponding external 0 of the close- 

ly snaced circular holes must be calculated before the radiation pattern of the 

antenna can be calculated.  The transmission coefficient cannot he calculated 

by multiplying the transmission coefficient of a sinplc hole by the number of 

holes.  Bethe gives the transmission coefficient of a single Isolated hole, but 

the presence of other holes causes the field on the outside of each hole to in- 

crease.  This mutual couplin- increases the power radiated by each hole. 

68. See '■eference in footnote *>1. 

69. See reference In footnote 66, n. 173. 
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T'/o valid methods of calculating the transmission coefficient and 0 _ 
ex 2 

are presented here.  The first method is based on calculations by Jacnhsen 

(t al.   and on the theory of artificial dielectrics.  The second method in- 

volves expressing the holes as a line source of dipole moments. 

.lacobsen's method of calculation consists of first finding the impedance 

V    of the holes in the aperture plate, then the corresponding power transmis- 

sion coefficient T , and finally the corresponding 0^ «.  His calculations 

arc carried out for the case of the infinite plane of holes shown partially in 

Fig. 16-4a. A TFM wave is assumed normally incident with F directed as shown. 

Conducting planes perpendicular to the plane of the holes and to the electric 

vector may he inserted without changing the field configuration. Such planes 

are indicated by the dotted lines in Fig. 16-4a. Thus parallel-plane wave- 

guides are formed, each of which terminates in a row of holes, as shown in 

Fig. lb-4b.  Collin shows that the impedance of the plate in Fig. 16-4b is the 

same as that of Fig. 16-4a. 

The rectangular beam waveguide antenna with an aperture of closely 

spaced holes is very similar to Fig. 16-4b.  The resonator on the left side of 

the aperture feeds the row of holes through a parallel-plane waveguide as shown 

in Fig. 16-4H. On the right side of the aperture of holes, however, the situ- 

ation differs from the parallel-plane waveguide. The antenna aperture must couple 

to free space and it will he assumed that it sees either a ground plane or flares. 

A ground plane is made by altering Fig. 16-4b so that the angle 8 is 0° instead 

of 90°.  Flares consist of altering Fig. 16-4b so that 0°<e<90° and so that 

the metal plates are of finite length.  Hither of these alterations to Fig. 16-4b 

70. See reference in footnote 51. 

71. R. Collin, Field Theory of Guided Waves. McGraw-Hill Book Co., New York, N.Y., 
I960, p.530. 
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will alter the field configuration for z>0 and hence will alter the aperture 

inpedance Z and the corresnonding transmission coefficient somewhat.  It is 

expected, however, that the impedance of the plate in Fig. 16-4a approximates 

the 7.    of the rectangular beam waveguide antenna with an aperture of closely 

spaced holes. 

The equivalent circuit of a cavity-backed antenna with the hole aperture 

of Fig. 16-4h is the same as shown in Fig. 16-1 with the suscentance R in 

72 
parallel with the resistance of free space.   Jacobsen gives the formula for 

the normalized suscentance R « B Z  for Fig. 16-4b with a ■ h as: 
a        a o 

3-1-     3Xfl2     ]U -  (A 7A)2]ll - \ D3  •  ^] (16-71) 
a nD3cose C J a3 

b^ 1>2 bj 

where A = cutoff wavelength for TF.,, circular mode in circular 
c °       11 

waveguide of diameter d;  X  * 1.706D 
c 

0 = angle of incidence of wave ■ 0° here 

The factor b. is the basic normalized susceptance of a plate with circular holes 

73 
and agrees with expressions found elsewhere such as in Collin.   The factors 

b., and b_ arc second order correction terms as explained bv Jacobsen.  The 

•*• 
factor b_ improves the accuracy of the B expression for large values of dia- 

l a 

meter l>.     The factor b, improves the accuracy for very closely spaced holes. 

The assumption that a<*\  was made in deriving b . 

For the case of a 4  h, F.n. 16-71 must be modified.  Examining Jacobsen's 

2 
reference shows that (a ) must be replaced by (ah) in the factor b., and that 

74 
the factors bj  and b are unchanged.   This reference also shows that the 

fin tfir 0.36 in the h_ factor is actuallv 1.2/n, which enuals f>.Ti.  Mence the 

71!.  See rpferonr»- in footnote 51, n. 1432. 

73. i>. Collin, Foundations for .llcrowavc Engineering. 'ler.raw-Hill Took Co., 
Now Yor!:, K.Y. , n. 340. 

74. Soo reference In footnote 71, pp.   572, 534-136. 
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suscentance expression becomes 

The power transmission coefficient T is that of a normal I zed admittance 
P 

Y    *  1+11',    at  the end of <■  transmission  live.     Tims a a 

Tp -   (1  + T+f-)- -   (1 + J^W^i-^rr (16-73) 

Typical value- of !'• will he much greater than two, so that 
a 

T     =  /./(?! 2) (16-7.'0 
P «' 

The external   nualltv   factor 0    _  can be  found dire.ctlv  in  terms  of T   . 
ex2 p 

Bv  the previous defini tion 0    „ - ««< W /P      ..     In  the  case of the rectangular 
ex?   r s  rad 

beam waveguide resonatoi—antenna, 

2*f r / (2f: (x)sin(2Ttz/A)" dx dv dz 

ex2 L 

7  ' — en 

dx dy 

where I7. ■ incident electric field 
n 

"ex2 " f- lTn" (16"'6) 
P 

Rut X ■ c/f -l/(f«/jj c ), thus 
o o 

0   - 2ti/T (16-77) ex2      p 

75 
which .-."rees with an expression In Jacobsen for an ordinary waveguide cavitv. 

i-omblnlnp, Kqs. 16-7 7, 74 and 72 gives the result 

71).  See reference in footnote 51, p. 1A32. 

246. 



«JA2    a2h2   (1-(A  /A)2)   (1-  (2/3)(D/a)3-0.38)2 

l'ex2 -  C—J  (lb"7Ö> 
2TTü 

This is an approximate expression for the Q    0 of the antenna with an aperture 

of closely spaced holes.     It is an approximation rather than an equality be- 

cause the aperture does not open onto an infinitely long parallel-plane wave- 

guide.       With this Q now known approximately, the value of Q        may be calcu- 

lated using  Kq.   lb-11. 

The effect of the holes on the resonant  frequency is easily seen by noting 

that IJ    in Eq.16-72 is negative.     Then according  to Eq.   16-4 a   will be lowered a r 

because of the holes. 

The second method of calculating Q    _ will now be given.    The  first step 

J,s  to  find the expression  for the line source of dipole moments which are pro- 

duced by the closely spaced holes.     Then the power radiated by this  line source 

is   found and  finally Q        is determined. 

The strength of the line sound is  related to the size  <md number of 

76 circular holes.     Each hole has  the magnetic dipole moment 

H    = ^ D3 H (lb- 79) 
m       3 o 

where K    is  the incident magnetic field.     No%. the electric field in  the hole 

is related to the dipole moment per unit area, p   , by 

jE ■ uiu    p    x u (16-iJu) o *m        z 

where p    - V  /A (16-81) rm        m 

Usually the are«' A is that of the circular hole.     However,  assume 

A ■ a w 

where a is the hole separation as before and w is some  unknown width in y 

76.       See reference in footnote  71, p.   301. 

7 7.       G. Goubau,  unpublished notes. 
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over which the dipole moment is spread. Then there exists a iine source of 

value 

Ky(x,y,0) «^„^    for !y|<!„ 

o        |y|> fw 

(16-83) 

Note the similarity to a slot.  Since here the width w is of ambiguous value, 

a way is sought to eliminate it from the determination of Q ... The elimina- 

tion of w  can be achieved if the approximation that E has a delta function 

dependence in y is assumed.  Hence 

Ü3 H0 
E (x.y.U) - u>y  -r—2- 6(y) (10-84; 
y o  Ja 

This equation is  the same as  Eq.   16-83 for w-*-(); both equations have  the same 

value of /    E    dy ■ voltage. 
y   y 

The power radiated by the line source of Eq. 16-84 can be calculated by 

the techniques used previously for the slot. The radiated field strength is 

given by  Eq.   16-21: 

_ _ e-JfcR 
E - j(u sin*    +u rosOcos«) ^r-r— I    I (16-83) 

0 <P AK y     x 

,     u "o  xi  \    jksinOsin*y   , o>uo -^ d(y) eJ WJ dy where I    -     /      *n^a ö(y) eJMi""""yj dy (16-8o> 

I    - £ e-k2sin2ecos26/4u^ 6_a 

X UQ 

Thus 

I    * wu     D\/(3a) (16-8«) 

So . 
U /I   lu  Y.      

_IkK   /  2       2 ** "' 
77       .,—    .      — „       .. o o o c J     w/rt       -k sin"ücos"if/4u'' (lb-8V) h ■ j*u sln^H-u cos0cos«i) - —  e o 

o 4> 3a AR 

wlierc  E     is   the  incident electric  field of the n»o mode.     Equation  16-39 
o 
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describes  the some  radiation pattern as  that of the slot. 

Now the maximum value of Eq.   16-89 is 

.3, 
-jkR r-      U"VV e 

K       ' ~T- ~ - -T^ E (16-90) max AR    u 3a o 
o 

Therefore .,     _ , 
t  Ttoi E    /p   e     Ü 

I i-        l*    /             ° o       o   o S        ■    t /n =*  ^—^—-— 
max       |   max| Q 2  ,2   n2    2 (16-91) 

Ju    A     R    a o 

From Lqs.   16-31  and 16-32, 

C =   A./27 „  AuR    SmflX 

ÄU" Prad 

Thus 

p = 2 i^    EQ  D 
rad 9/2" cu A  a2 <lb~92> 

o 

NW «>ex2 = VVrad'   so 

K2 

_o 
'exl! ~    p 

J%*H0UM)H^2/uo ( 

rad 

Substitutinj»  Eq.   16-92  into Eq.   16-93 and simplifying gives  the  final result 

3      2 oi     hi 
Q    , =  J .,    •* (16-94) 6x2      2,2  D6 

It is interesting to compare Eq.   16-94 with the  result of the other method, 

K«|.   16-73.     Equation  16-73 contains more   factors   than docs  I'q.   16-94,   but 

usin;;  the   fact   that  closely  spaced holes have   (D/a)S5l,  both equations  r.ive 

Qex2 = (:K ^  IJ"6 (16-95) 

where  V.    is  a  function of A  and Ii 

The   factor  i~    jj>,rees with  Hethc's  coupling hole  theory which  has   the   radiated 

;>ower proportional  to i>'. The   factor a    can be eliminated  by noting   that 

73.     See  reference  in   footnote 66,  p.   173. 
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the number of  holes N  In the  line  source of Length L is 

N -  L/a (16-96) 

Thus a    « L /N   , so 

CE L2 

Q«2" 77 
Hence the power radiated is proportional to the square of the number of 

holes  if all other parameters  remain constant. 

The factor C_ in Eq. 16-95 is expressed somewhat differently by Eqs. 

16-94 and 7d. This difference is not too surprising considering the dif- 

ferent approximations made in each method. The next section will compare 

actual numerical values of Q ? calculated from these two equations. The 

values obtained by Eq. 16-94 should be slightly more accurate than those ob- 

tained using Eq. 16-78, since the second method assumed radiation into half 

space  rather  than into a waveguide. 

XVII  EXPERIMENTAL STUDY OF THL RECTANGULAR 
BEAM WAVEGUIDE ANTENNA 

A.     Measurement Apparatus and Techniques 

Two measurement techniques were used to investigate the experimental 

cavity-backed antenna.    The  first was  the reflectometer technique discussed 

previously  in section XV.     The second  technique involved measuring  the radia- 

tion pattern of  the antenna. 

The   reflectometer technique  is  applicable because  it was shown previous!'. 

that  the  cavity-backed antenna with either  the slot or  the hole  aperture has 

an equivalent  circuit which is a resonant circuit.     In section XV the  tecn- 

nique was used  to measure  the Q       and Q    of  the  closed  resonator.     For  the 
CO o 

cavitv-backed  antenna the same  technique was  used  to measure Q 3nd Q 
oor or 
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These measurements were always made with  the probe adjusted  for critical 

coupling,  unless otlierwise stated. 

The antenna radiation pattern measurements were made in a chamber which 

was about 2 meters wide,  A meters high,  and b meters  long.    The entire  floor 

of  the chamber,  as well as  the walls  to a height of 2.2 meters, was covered 

with a microwave  absorber.     The  rectangular beam waveguide antenna, with its 

xz  plane horizontal, was  placed on a 1 meter high  turntable  located at one 

uid of the measuring chamber as shown in  Fig.   17-1.     To preve it  reflections 

off of tiie   front  of the  table, microwave  absorber was placed over it.     The 

antenna with  the  probe  adjusted  for critical  coupling was   fed by a klystron 

through an isolator. 

A receiving horn was  located at the other end of the measuring chamber 

some six meters   from the  transmitter.     The horn was aimed at  the transmitting 

antenna.    A microwave   superheterodyne   receiver was  used as a detector. 

The antenna pattern was measured by using a precision waveguide attenuator 

located at  the  input of the   receiver to maintain a constant  receiver output 

while  the  rectangular beam waveguide antenna was  rotated about  its y axis.     The 

ingle  rotated was  the angle  8 of Fig.   1^-2, measured  between   the  z axis and 

the   line joining  the transmitting  and  receiving  antennas.     The  radiation pattern 

tnen  is the plot of  the measured attenuation at  the  receiver versus  0.     The 

gain was measured by comparing  the maximum attenuation  required at the  receiver 

for the beam waveguide antenna with  the maximum  attenuation  required when  the 

antenna was  replaced with  a standard gain horn.     The measured gain  thus  included 

ilic effects of   losses within  the  resonator. 

The length of tue clia-nber is  believei  to be adequate   for  radiation  field 

measurements.     This adequacy was determined by evaluating  Kq.   lu-6lJ  for  the 
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Kresnel field.  The distance K - R at which the radiation or far field begins 
m 

can   be calculated   from  Kq.   10-69 with sin0cos4> • 0.     Thus 

R   - 5k/i/ (17-1) 
m o 

l -2 For  the experimental   antenna u    »  141 m       so  that   R    =  b.68 m.     The   field o ro 

patterns measured in   the   chamber were made  at  a distance of six meters   from 

the   antenna.     Although  the measurements were made at  a distance  somewhat   less 

than  R    =  6.68 m.,   the measured patterns should be very similar  to  the m 

tiieoretical   radiation   field pattern. 

Certain  imperfections existed in  the pattern measuring arrangement.  These 

consisted mainly of  reflections  from the wails of the measuring  chamber and 

leakage  from  the waveguide system.     It appears  that  the measurements are  reli- 

able   to  levels  of  35 or 40 db below  the expected pattern maximums.     A better 

chamber would  he needed if greater accuracy were   required. 

B.     Slot Aperture 

1.      iJesign and   Fabrication 

The  fabrication of the  rectangular beam waveguide antenna was  achieved by 

modifying the experimental resonator of section XV.     The original resonator 

was   fabricated with  a  removable wall at   the z ■ 0 plane.     This  wall  or plate 

was  a brass strip 1/4" x 1  1/8" x 30" and was held in place by 80 screws.     To 

make   the   resonator into an  antenna  the  solid wall  had  to be   removed  and  replaced 

with  a  thinner brass  strip with coupling  apertures  in  it such as holes  or a slot. 

The  cross-section of this new wall in which the coupling apertures were placed 

as  shown in  Fig.   17-2.     Also shown are brass  flares which can be attached  if 

desired.     The   flares extend  in x  from x = -12" to -»-12".     The thickness of  the 

z = U wall In  the  region where the slot or holes were  cut was 0.025" and extended 
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the full length of the x axis of the resonator  It was hoped that the wall 

thickness of 0.025" would be thin enough to approximate the infinitely thin 

wall assumed In the previous section. The new wall was also held in place with 

bl) flat head screws extending from x ■ -15" to x ■ +15". 

The first slot antenna was made by sawing a slot from x - -12" to x ■ +12" 

of nominal width w - Ü.018".  The sawing was done after the wall had been at- 

tached to the resonator with the 80 screws, since screwing down the wall after 

sawing the slot could result in stretching the slot width in places.  All burrs 

were removed with a file while the wall was still attached with the screws, 

ideally, the slot should then occupy the area from y - 0.009" tc +0.009" and 

from x = -12" to +12".  In fact, however, the y boundaries of the carefully 

machined slot were somewhat in error.  This error was due to two causes.  First, 

Lht saw wandered off the x axis as it cut, producing a very slightly crooked 

line which wanders a few thousandths of an inch off the x axis.  Secondly, the 

width of the slot was not 0.013" but 0.018" ± 0.002".  That is, the width was 

nonuniform, varying by as much as i 0.002" along the length of the slot.  This 

slight nonuniformity is undesirable since it could conceivably pertuni the radi- 

ation pattern. 

A second slot antenna was later made by removing the z » 0 wall of the 

first slot antenna and replacing it with a similar wall that had a slot cut in 

it which had a width of 0.010".  The width of the 0.010" slot varied by ± 0.002" 

along its length.  This is a variation of * 20%, larger than that of the 0.01S" 

slot.  The two walls with the slots are shown in the photograph of Fig. 17-3. 

The O.OlU" slot width was the smallest that could be machined, since narrower 

saws broke while sawing. 
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2. Results_of Measurements 

Hie slot antenna with w = 0.018" was the first to be tested.  It was at- 

tachod to the rcflcctometer apparatus and the probe depth was adjusted for 

critical coupling for the n - o mode.  Then the quality factors listed in 

Table 17-1 were measured.  Note that the use of the optional brass flares of 

Kif>. 17-2 had little effect on the Q's.  The purpose of the flares was to in- 

troduce directivity in the yz plane and thereby to raise the antenna gain. 

The antenna gain and radiation pattern for the slot with w » 0.018" were 

measured at the resonant frequency of the n ■ o mode. The total measured gain 

was 14.0 db without the flares and 19.0 db with the optional flares in place. 

The radiation patterns are shown in Fig. 17-4. 

The theoretical 0   of the antenna was previously calculated and resulted oor '       ' 

in a value of Q   « 52. The experimental values of 150 and 160 in the Table oor r 

are about three times as  large as the theoretical value,  The antenna slot 

coupling wall was about 0.025"thick so that this dimension was even greater 

than the slot width w - 0.018".  Thus the assumption used in the theory of 

having an infinitely thin slot wail is not valid for the experimental antenna. 

A thick slot wall would tend to Increase Q   and this was borne out by the 
oor 

measurements. 

The experimental radiation patterns of Fig. 17-4 do not agree with the 

theoretical Gaussian radiation pattern of the n-o mode. The dotted line in Fig. 

17-4 siiows the calculated or theoretical pattern.  Vote that there is agreement 

only over the range |o| < 7*.  For |G| > 7* the experimental patterns are poor. 

Tiiis is possibly due to the following reasons: 

First, the antenna cavity may contain fields that have a small n-1 component 

in addition to the n-o mode.  This multimoding stems from the overlap of the n*o 
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OrA-Port 0.010" Slot    0.018" Slot    0.018" Slot 
Resonator       with Flares    No Flares       With Flares 

Resonant 
Frequency 
f      , GHz n-o' 

8.975 9.342 9.375 9.380 

Loaded Q 
for critical 
coupling 

162J 110* 80* 90* 

Unloaded 
"Jncoupled 
Q 

3200 200* 160* 170* 

Unloaded 
but Coupled 
Q 

3120 190* 150* 160* 

Probe depth 
for critical 
coupling 

about 
1 mm. 

about 
5   BUB. 

about 
6 on. 

about 
6 ma. 

* Accuracy In doubt since Q's are so low !.hat 

observed reflection pattern from antenna input 

has an n»o resonance so broad that it apparent- 

ly overlaps somewhat into the n-1 resonance. 

TABLE 17-1 

MEASURED VALUES OF Q FOR THE SLOT ANTENNA 
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and n-1 resonance curves and is due to the low Q's listed in Table 17-1. 

Thus exciting the antenna at f   produces fields of the n»o mode with the 
n*o 

addition of small amplitude fields of the n-1 mode. The exciting probe is at 

position w » 0 and should theoretically not excite the n«l mode at any frequency. 

However in section XV it was shown that asymmetry -n the machined resonator al- 

lowed some excitation of the n-1 mode. If the Q's of the antenna could somehow 

be raised, thereby lessening the mode overlap, this multimodlng and the corres- 

ponding degradation of the radiation pattern would be eliminated. 

Mother reason for the poor radiation patterns may stem directly from the 

fact that the Q's were very much less than those of the closed resonator. The 

beam modes were originally derived for a resonator with enclosed walls of per- 

fect conductors. The use of finite high conductivity walls should not perturb 

the fields very much, nor will the introduction of a small coupling probe. 

However, introducing slot coupling so large in magnitude that Q is reduced 

to 160 may allow resonator fields other than beam modes to exist. 

Since the slot width w ■ 0.018" produced low Q's and a poor radiation pat- 

tern, it was decided to test the slot antenna with w « 0.010". The measured Q's 

are listed in Table 17-1. Ncte that they are each slightly higher than those ob- 

tained with w ■ 0.018" and hence agree with theory. 

The radiation pattern of the slot with w * 0.010" was not significantly 

changed from that of the slot with w ■ 0.018". The reason for the lack of im- 

provement is evidently that the slight increase in the Q's was offset by the 

nonuniformtty of * 0.002" in the machined slot width. 

In conclusion, th«» slot aperture has too large a transmission coefficient 

for the size slot widths that can be machined accurately • Only slots of 

width greater than about 0.018" can be machined accurately, however such widths 

transmit so much power that the Q of the resonator Is drastically reduced. The 
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very low Q results in a poor radiation pattern.    Hence another type of aperture 

coupling must be used that has a lower transmission coefficient.     Therefore an 

aperture made up of circular holes was investigated experimentally. 

C.    Aperture of Closely Spaced Holes 

i.     Design and Fabrication 

The design of the iKle apertures  consists of choosing a hole diameter which 

will  result in  reasonably high values of antenna efficiency and Q's.     if the 

holes can be machined accurately then the aperture should yield a better antenna 

pattern than rices  the slot antenna. 

The  theory given in the previous section of this  report predicts  the extern- 

al  Q's  for an antenna with holes of constant diameter closely spaced along  the x 

axis.     The value of Q    _  is determined either by Eq.   16-78 or 16-94.     Equation 

16-94 is probably more accurate.    Thus substituting h * 0.98 cm and A  ■  3.33 cm 

in Eq.   16-94 results in 

Qex2 =   (16.5 x 10~8 meters4)  a2 D~6 (17-2) 

For example let  0 « 0.15" - 0.381 x 10~2 m.  and a - 0.175" - 0.445 x 10"2 m. 

Such holes can be accurately drilled.     Then Q    _   from Eq.  17-2 is 1,090.     This 

value is useful and reasonable.     It is much greater than the 53 calculated for 

the slot and hence should produce a better radiation pattern than did the slot. 

Also, since it  is much less than Q      ■ 3300  for the closed resonator, the an- oo * 

tenna efficiency should not be too much less  than unity.     Hence the diameter 

L» - 0.15" and spacing a ■ 0.175" were chosen  for the antenna.     The corresponding 

Q    .. given by hq.  16-78 is 70% of that given by Eq.  17-2, and this percentage 

holds  for all antennas with the ratio (D/a) - 15/17.5 » 0.85.     From now on the 

theoretical Q     . will be assumed tc be  that given by Eq.   17-2. 

Thi:  fabrication c' the   antenna consists of drilling the holes along the x 

axis of a brass wall of  the type shown previously in Fig.  17-2.     The wall is 
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then attached to the experimental resonatov using screws every half wavelength 

along tike x direction.  Since the aperture holes have diameter D ■ 0.150" and 

separation a =• 0.175", the separation between the outer edges of the holes was 

0.025". This separation was small enough to be considered close spacing yet 

large enough to prevent buckling or deformation of the metal between the holes 

when they were drilled. The first hole was drilled at x » 0 and then the other 

holes were drilled in both the +x and the -x directions along the 30 inch 

length of the aperture wall.  Hence the centers of the holes were placed at 

x - 0, ± 0.17V, ± 0.250",..., * 14.875". All holes were carefully drilled and 

all burrs were carefully removed. 

Two other similar antenna walls were also made. One had holes of diameter 

U - 0.10", the other D - 0.175". Both had 0.025" separation between the edges 

of the holes, so that a in Eq. 17-2 was 0.125" and 0.200" respectively. The 

wall with D " 0.10" was of the same outer dimensions as shown previously in 

Fig. 17-2. However, the wall with D ■ 0.175" was made out of a large sheet of 

brass in order to approximate a full ground plane. The brass sheet extended 

to y - + 2 1/2" and - 2 1/2" instead of the * 9/16" of Fig. 17-2. 

In addition to the above three walls with closely spaced holes, a few 

walls with smaller holes spaced relatively far apart were also made. No design 

of such apertures is possible since no theory for holes other than closely 

spaced ones has been devised.  A wall with holes spaced closely -md another with 

holes spaced far apart are shown in Fig. 17-3. 

2.  Results of iteasuretnonts 

Measurements on the antenna with hole apertures consisted of determining 

the Q's and the radiation pattern. Data on apertures using three different dia- 

meter holes was obtained. 
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Table 17-11 lists the Q's measured with the reflectoaeter for three 

antennas with closely spaced holes excited with the n-o mode.    Also Hated 

are the theoretical values of Q       calculated using Eqs.  17-2 and 16-11. x>or ° ^ 

The agreement between the theoretical and experimental values is good except 

for the case D - 0.100".    This discrepancy may be due to possible increased 

ohraic losses around the holes and will be discussed at the end of this section. 

Figure 17-5 shows the experimental radiation patterns for the cases D - 

0.10" and D « 0.15".    Note that the experimental data points all lie very close 

to the theoretical curve of Eq. 16-61.     In addition the experimental patterns 

were very smooth between the data points, as was observed by rotating the 

antenna while watching th>i receiver output.    Thus the experimental and theoretical 

curves coincide, at least down to about -30 db.    Below this level the accuracy 

of the measurements is doubtful as was explained earlier.     In summary, over 

the range of accurate measurement the measured and theoretical patterns are in 

excellent agreement. 

The measured total gains, G, were 11.0 db for D - 0.150" and 7.6 db for 

D - 0.100".    The theoretical gains are calculated by first finding the efficiency 

T from 16-12 using the measured Q values of Table 17-11.    The calculations give 

r - -2.34 db for D - 0.10", and T -1.40 db for D - 0.15".    Now GT db - G db + 

r db.    The value of G is 14.0 db according to Eq.  16-31, but this equation was 

derived under the assumption of an infinite ground plane.     Experimentally only a 

partial ground plane was present.    Hence some radiation could exist for z<0. 

Thus the theoretical or calculated value of G for this case must be less than 14.0 

db by perhaps 1 or 2 db but not by as much as 3 db since this would imply equal 

radiated power in both half planes, i.e., in the z<0 as well as z>0 directions. 

If an estimated value of G - 12.5 db is used then G    becomes 10.1 db for D - 0.10" 

and 11.1 db for D - 0.15". 

The measured value of U    - 11.0 db   for D - 0.150" is in good agreement with the 
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FIG. 17-5. RADIATION PATTERNS OF ANTENNAS 
WITH CLOSELY SPACED HOLES 
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theoretical value of 11.1 db. The measured value of G - 7.6 db for D - 

0.100" is somewhat low compared to the theoretical value of 10.1 db. 

A wall with hole dl«meters Ü - 0.150" was fabricated which extended to 

y ■ t 2 1/2". Measurements for the resulting antenna with this larger ground 

plane are listed in Table 17-11. The Q's are slightly higher than those of 

the previous antenna with D ■ 0.150", perhaps due to better cleaning of the 

brass. As expected its radiation pattern was very similar to that of Fig. 17-5. 

Note,however, that the measured gain increased by 1.0 db because of the larger 

ground plane. 

Figure 17-6 shows the experimental radiation pattern for the case D ■ 0.175". 

Note that for je|<9° the experimental values agree with the theoretical Gaussian 

pattern, but for |e|>9° the experimental pattern does not drop off as rapidly as 

the Gaussian. According to Table 17-11, Q   ■ 620 and is evidently low enough 

to cause deterioration of the pattern. 

The measured total gain G was 13.4 db. Since in this case the wall ap- 

proximated a full ground plane by extending to y ■ * 2 1/2", the theoretical total 

gain is G_ - 14.0 db + r db. The value of T is -1.0 db using the measured Q's 

of Table 17-11 in Eq. 16-12. The resulting G is therefore 13.0 db, which 

agrees well with the measured value of 13.4 db. 

In conclusion, the theoretical Gaussian pattern was successfully achieved 

with an antenna using closely spaced holes and which had a Q   > 800, correspond- 

ing to efficiency r * -1.4 or »ore decibels. The best value of Q   is about 

800 since the Gaussian pattern is then produced vith maximum efficiency 

Though the antenna of closely spaced hol*;<* perionas success ally, a brief 

study of hole apertures which a;« tioi closely spaced was also made.  The spacing 

chosen was a - 1/8", and hole diameters were varied from 0.022" to 0.100". It 

was found that the values of Q   and total gain G_ were in general too low to oor T 

allow measurement of radiation patterns. 
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D = 0. 175" 
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A possible explanation for the low Q   at, for example, w = 0.0225" Is 
oor 

that the ontnic losses around the holes are large.  To investigate this explana- 

tion, another z ■ 0 w.,11 was made, but instead of coupling holes indentations 

of depth 0.025" and diameter 0.0225" were drilled every I/o" along the inside 

of the wall.  The measured Q  was 2620, which indicates somewhat greater ol'.mic oo 

loss  than  for the  closed resonator of section XV, which had a 0      =  330C.     Thus 
oo 

the assumption that holes do not alter the ohmic loss is only approximately trut;. 

Since the ohmic loss for D - 0.0225" is not large enough to explain the low 

value Q   "  1070, the radiated power must be large for this particular diameter. 

An experimental probing of the radiated field showed strong maxima along the +x 

and -x axes, indicating the presence of surface waves.  Evidently these surface 

waves are produced by the widely spaced holes and couple strongly to the interr.a, 

resonator field to give the low Q.  Thus widely spaced holes do not give desir- 

able results. 

To summarize this section, it has been shown experimental}/ that closely 

spaced circular holes produce the Gaussian radiation pattern with good efficienc;. 

The slot apeiture was not as successful because a sufficiently narrow slot couLJ 

not be machined.  Therefore, a practical rectangular beam waveguide antenna can 

be constructed by drilling closely spaced circular holes along the x axis of 

the rectangular beam waveguide resonator. 

XVIil. THE RECTANGULAR UEAM WAVEGUIDE MUNOPLI.SE ANTENNA 

A. use of n=i and n=o Modes for Monopul&e Antenna    • 

The n*l and n*o modes of the rectangular beam waveguioe antenna have pos- 

sible application in rannnnnlsp radar and tracking systems.  To investigate t'.'.is 

application a brief description of the antenna requirements of monopulst radar 

will be hel.iiul. 
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A monopulse rad«? antenna sends out a single pulse of radiation aimed in 

the vicinity of a target object.  The pulse reflected by the object is then 

received by the monopulse antenna.  The monopulse antenna performs the special 

function of indicating the range and angular position of the object on the basis 

of the single pulse. 

A monopulse radar antenna can also be used in tracking a continuous signal 

source instead of a radar pulse.  The antenna indicates the angle 6 from which 

the received radiation is emanating.  Hence monopulse antennas also have ap- 

plications in radio astronomy and satellite communication. 

The monopulse antenna as first developed consisted of a pair of identical 

regular waveguide horns aimed in slightly different directions. The horns were 

connected to two different ports of a hybrid tee junction and the remaining two 

ports of the junction then simultaneously contained microwave signals that were 

tiie sum and tiie difference of the horn signals.  The sum pattern is an antenna 

field strength pattern which is a symmetric or even function of 8.  The dif- 

ference signal corresponds to an antisymmetric or odd field strength pattern. 

Both symmetric and antisymmetric field strength patterns are required of 

any monopulse antenna.  In 1962 Wheeler proposed two theoretical antenna field 

79 
strength patterns as an ideal pair fo»- monopulse radar.   The proposed symmetric 

field strength pattern was the Gaussian pattern produced by the Gaussian line 
2 2 

—u x 
source distribution T.<*e    o  .  The antisymmetric field strength pattern proposed 

was tiie derivative of a Gaussian produced by the line source distribution 
2 2 

—u x 
l>x c o  .  However, these two line source distributions have not been physical- 

ly realizable ur> to now.  Only sinusoidal approximations to these distributions 

7'».  ». A.. Khceler, "Antenna Beam Patterns which Retain Shape with befocusing," 
I.R.K. Trans, on Ant. & Prop., vol. AP-10, Sept. 1962, pp. 57J-5SO. 

IV).     II. W. Rcdlien, "Monopulse Operation with Continously Variable Ueamwidth by 
Antenna lie focusing," IKKH Trans, on Antennas and Propagation, vol. AP-16, 
July, 1963, pp. 415-423. 
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have been available. 

The two proposed line source distributions are Identical to those of the 

n»o and n«l modes of the rectangular beam waveguide antenna.  The n»o mode line 
2 2 

—u x 
source distribution K«e o  was shown in section XVI to produce the Gaussian 

2  2   2 
symmetric field strength pattern E(8) « constant * c '    o.  The n»l mode 

2 2 
has  the  line source distribution E«x e    o      and produces the antisymmetric  field 

strength pattern. 

To operate a monopulsc system using the rectangular beam waveguide antenna, 

two such antennas would be needed.    One antenna must have the  resonant  frequency 

of  its n»o mode,   f       , equal  to the desired operating  frequency.    The other an- 

tenna must have its  f    ,  equal  to the same operating  frequency  f     .    The  anten- 

nas must be oriented with both z ■ 0 aperture walls  facing in the same direction. 

The distance between the two antennas should be small enough so  that  the angle 

8 measured  from either of their z axes  to any target object is approximately 

the same.     But the two antennas should be spaced apart by perhaps a meter or so 

to minimize possible mutual  coupling. 

B.    Theory of Antenna Excited in n»l Mode 

The derivation of the radiation pattern of the antenna excited in the n«l 

mode will be similar to  that used for the n=o mode and carried out in section 

XVI.    The  field incident on the aperture of the antenna for the n«l mode is, 

2 2 
E - u E,  He,   (2u x)  e"UoX (18-1) 

y 1      lo 

but He,   (2u x)  ■ 2u x, giving 1        o o 

2 2 
E - u E-2u x e'V (13-2) y 1    o 

Now using the  Fourier transform technique,  the radiated field strength  for the 
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case of a slot aperture excited In the n-1 node is, 

- -JkR 
K - .1(u0slnW-u^cos0cos*)^-^- E^  l 

(18-3) 

where  I    «  »/TwA/u 

H 2 2 
I  .  -    / 2u xe'V +Jk8in6cos*x dx XI / o 

The  coordinates and symbols are  those used In the previous derivation.    Now 

1  ,   can be evaluated without difficulty when L -». xl ' 8 

Then 

7 2 2 
I      - 2u     /     xe_uöx +Jksinecos<J>x   . xl      ZUo  /      xe <*x (18_5) 

81 From a table of Fourier transforms 

I    jfe-i,ßf2 eJ2-fg df . . g3-3/2 e-V/ß 
80 e (16-6) 

2 
Let nß«u  ,  f«x, and 2irg»ksinOcos4>.     Then 

T 
Uo  , -ksln9cos»ir   '  ,  -(ksinecos*)2/4u2 (18-7) xxi" T l    r^        ,e ° J 2iru 

o 

or 

Ixl - j  /^~ sln0cos*e-k2sln2eco82*/4uo (18-8) 
u o 

Therefore 
— —   —jkK         2       2 9 ? 
E -   (--^slnO-u^cosOcos*) S^^/lvT/V • .7 £=■ slnöcos««-* sln  Gcos   */4u

0 2 u 
Fov  the case  *-(), ° (18-9) 

81.  G.   Campbell   and  R.   Foster,  Fourier Integrals  for Practical  Applications, 
D.   Van Nostrand Co.,  New York, N.Y.,  1948,  pp.   9,   34,  81.   ~       " 

»71. 



-jkR      2      2   .    2 
E -   (-E,)("uAcosO)  —-—    /TWi ^r sinOc"k S '     o (13-lU) 1       * R u2 

o 

This is a field strength pattern that is antisymmetric in 8.    The pattern is 

however omnidirectional in the yz plane just as  the pattern   for the n»o mode 

is.     The corresponding pattern of the power density S is, 

I           -2      2„    Tw      ,   2„ -k2sin26/2u2 /1U   .,, S    , -E, cos  6  sin 9e o (18-11) 

The gain G of the antenna excited in the n»l mode will now be determined. 

In order to do this an expression for the total power radiated must first be ob- 

tained.     Now for a slot antenna of slot width w, Eq.   16-34 yields 

P     , « - Tw    *  E2   (x)   dx (18-12) 
rad      n        _oj    c 

For the n-1 mode 

m Oft 2 

/    E2       (x)  dx =  E2 /    He2  .(2ux)e"2V    dx (18-13) 
_    n*l 1        n«l      o 

Evaluating this integral gives, 

t   £, (x) dx - t\ <n!/»0)Vf - E^i 

G     ,        S f/P* 
n«l _    max n«l    1 

G S /F2 
n«o        max n»o' ro 

(18-14) 

Similarly  for the n«o mode 

1    EL,  <x>   dx - E2   (Öl/u )}/f- E2l/|f- (18-1.) nmo o o    ■ I        o ¥ l   u -=• o 

Then using Eqs.   18-12,  14 and 15 in the general gain equation 16-32 

G «  4TIR2  S       /P     , (18-Lo> 
max    rad 

yields 

(18-17) 
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The  value of S for  tho n*o mode   is   from  Ko.   16-37, max 

E2  Tw 

max n=0 ,22 ,«„ 
nAuV (18-18) 

o 

Now for the „-1 mode the maximum value of S in Bq  18-11 
"•' 18_]1 can be found by set- 

ting the derivative of S with respect to 9 equal to zero. Thus, 

2 4_2Q/„ 2 d «   2„ , 2Q -k"sin%2u . •?T  Icos 6sin 6e o] do ■ C 
(18-19) 

6=0 
max 

Since the range of interest of 8 is |,|<,. „here Eypl     , 
max   * * * 

can be simplified by using the approximation that cosVl.  Then 
max'   -»-f  18-19 

£ [sln20e-k2sin29/2Uo] * 0 

6=9 
max 

or 

Then S becomes max 

o 

The gain  for  the n«l mode is  from Eq.18-17, 

!73. 

(18-20) 

sl°2e-'-1?2 sl" W"W + ta«„»V =o 
p 2u2 

sin 0        ^—2. 
maX        k2 (18-21) 

2       2 E  Twk 
1 2     2-1 

Smax n-1  = "u 2  (uo/k )e C18-2J) 

or ->P2T\ 

s      , . üiTL .-i 
max"1     nX„V (18-23) 

o 

Gp-1 * 2e~ G—« " 0.726G        = JL .A7   -1 
n=u       Au       -'   " (18-24) 



where the value of C,        was p.lven previously by Kq. 16-31.  Stated in decibels n=o 

Gn-l(db)  * lJn=o(dl>)   "  lA db (18.25; 

These theoretical calculations for antenna pattern and gain are based on 

the assumption that the slot length L    is infinite.    A finite length slot would 
s 

result in side lobes in the pattern just as occurs for the case of tne n-o mode. 

The gain should be relatively unchanged when making L a finite but reasonable 
s 

length. 

C.     Excitation of n-1 Mode by One Probe 

The antenna with 1) - 0.150 inches and described in section XVI of this 

report was used to test the theory of the n-1 mode excitation.    The exciting 

probe was placed at the point in the resonator where the field strength is a 

maximum for the n-1 mods.    This was accomplished by drilling and tapping a new 

hole in the antenna resonator at x - 2.34 inches and z • -0.328 inches.    A 

brass plug was inserted in the original probe coupling hole at x - 0.    The 

probe in its new position was adjusted to the proper depth to obtain critical 

coupling for the n-1 mode at a frequency f    . - 8.963 GHz. 

The preliminary radiation pattern measured at 8.963 GHz is shown in Fig. 

18-1.    The theoretical or calculated pattern given by Eq.   18-11 is shown also 

in Fig.  18-1.    The agreement between measured and calculated values is excel- 

lent for the range 6<0e but only fair for the range 6>0°.    A possible reason 

for the asymmetry of the measured pattern is that the n-o mode may have been 

excited along with the n-1 mode. 

The total gain G_ of the antenna was also measured.    The gain was 9 db 

at the peak of the pattern which occurred at 6 - -3*.    The theoretical total 

gain is G  (db) - 11.1-1.4 - 9.7 db.     The calculated and measured gains at 

6 - ~5* are in good agreement. 
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FIG. 18-1. RADIATION PATTERN OF ANTENNA EXCITED IN THE n-1 MODE 

Probe at x»+2.34" 
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It was decided to place the probe on the other side of the antenna, that 

is, at x - -2.34". The hole at x - +2.34" was closed with a brass bolt. The 

probe at x - -2.34" was adjusted for critical coupling to the n-1 mode as in- 

dicated in Table 18-1. The resulting radiation pattern is shown in Fig. 18-2. 

Note that this pattern is almost the mirror image of the pattern of Fig. 18-1, 

that is, the nw pattern is asymmetric with its maximum at 6 - +5*. The probe 

placement evidently determines the kind of asymmetry obtained. Note also that 

for both probe placements the minimum ate- 0 in Figs. 18-1 and 18-2 is ap- 

proximately -20 db. Theoretically the value should be -» db. 

A possible explanation for the difference between the measured and theor- 

etical n-1 radiation patterns is that other modes are present in the resonator. 

In particular the n-o and n-2 modes may be present due to the closeness of their 

resonant frequencies to f ..  Figure 18-3a is a sketch of the n-o, n-1, and 

n-2 modes on a reflectometer display of the power reflected by a single probe 

at x ■ i 2.34". The probe has the depth for critical coupling to the n-1 

■ode, and the n-o and n-2 modes are therefore undercoupled. The n-o and 2 modes 

are only moderately undercoupled, however. The loaded Q, Q. , determines the de- 

gree to which the n-o and 2 mode reflectometer curves overlap onto the n-1 

curve.  If Q. is high then the n-o and n-2 response curves do not extend 

much at all toward the frequency f , on the reflectometer display. However, 

tor the antenna studied here Q. is on the order of one half of Q   or 
L ^oor 

1/2 • 1000 - 500 and thus the Q curves overlap slightly as sketched in Fig. 

18-3a. Therefore, setting f « f . will excite not only the n-1 mode but also 

to some extent the n-o and n-2 modes. 

276. 



•*^m*m 

id 
u 

■rl .O 
U  r-t  -O 
01   id 
U   u   c 
O   O -H <u H «a 

0) "O 
rl l-l 
3   «0   C 

o a) 
H O 

•H G   00 
U d'H 
cd u U, 

•H «J 
T3 -d   c 

r».       h»       rs. 

ON (3\        IV. 

o IN      in 

i 
00 

I 
00 

« 
§ 

rH 
a. 

§ 
o u 
OO 

•a  ^i 
V   ■ 
t       c en 
3   «M o o 
2 .■ •» -* -# 4  n-i i I I 
3 — 

a 

•o 
«j 
»4 «n en a» 
3  -4 vO vO vO 
S   C M 
a  c x 

C* Oi a» 
• • 

Ä"" ^ oo oo 00 

•o 
«1 

B 1 B 
3 J3 *J 
S o a 
<d u   ai 
o| a. (3 

m 
• 

m 
o m rH 

o .n e T> 

«i IN 
u a c I 

•rl rH 
01 v-/ 

+ 
.a 
TJ .C 

TJ 
IT» • m 
.H • 
1 

•H 
1 

.O J3 
•o •a 

XI JO 
T» 

• 
IS 

<0 • 
(*4 

o 

3   v 4J 
rH  J3 -rl 
*    O ■ > u o 

&. a, 
x 

en en a • • • 
IN 
+ 

CM 
1 

CM 
+ 

u 
0Q 

s 
U 

§ 
CQ 

Q 
U 
H 
M 
U 

d 
V S 
2 § 

3 ■ 
H     W 

I u a, o 

S 
3 

277. 



•o 
I 
I 

w 
CO 

SB 
O 

CO 

W 

w 
> >—< 

< 

w 
OS 

0 -- Degrees 
-20    -16   -12    -8-4      0      4 8      12     16    20 

•Q-   =   experimental 

,'i"ii"" 
IIP 

FIG.   18-2      RADIATION PATTERN OF ANTENNA 
EXCITED IN THE n = 1 MODE 

Probe at x = -2. 34" 

278. 



a)   Reflectometer Display for a Probe at x = +2. 34" 

n = 0   A e'k2sir,2e/4u
0
2 

„ - 1   » o^fl«"^ sinT)/4u * n- 1   isinoe o 

A Kad'   of E<*"   18'27> 
Probe at x<0 

b)    Radiated Fields of n= 0 and n= 1 Modes 

FIG.   18-3 ADDITION OF n= 1 and n= 0 MODES 
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Consider for simplicity chat the fields in the resonator tt frequency 

f|  consist only of the n«l mode plus a small  field of the n-o mode.  Since 

the n-o mode is off resonance, its  field differs in phase from the n-o mode 

field by approximately 90*.    The equivalent circuit of Fig.  16-1 is essentially 

an inductor for frequencies ~.bove  resonance, so the n-o mode fields will lag 

the excitation by about 90°.    Thus the resonator field consists of 

2 2 2 2 
E - -jEoe"UoX    * E^u xe"UoX (18-26) 

where E >>E >0 1      o 

and    + corresponds to probe at x>0 

- corresponds to probe at x<0 

The resulting radiation field is  found with the aid of Eq.  18-8, giving 

Erad«-jtoe o    ± jEj8in6e o (18-27) 

where <J> has been assumed zero 

+ is for the probe at x>0 

- is for the probe at x<0 

Figure 18-3b illustrates the summation of these n-o and n-1 patterns to form 

the pattern of Eq.  18-27 with the - sign,  corresponding to the probe at x<0. 

Note that the total pattern has the peak at 6<0 of a higher value than the 

peak at o>0.    A sketch of Eq.  18-27 with the + sign would give the higher 

peak at 6<0. 

The theoretical predictions of Eq.  18-27 agree qualitatively with the 

previous experimental graphs of Figs.   18-1  and  18-2.    That is, a probe at x>Ü 

gives a maximum peak at 6<0, and a probe at x<0 gives a maximum at 6>0. 
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There is one basic disagreement between Eq.  18-27  (as graphed in Fig. 

18-3b)  and the data of Figs.  18-1 and 18-2.    The theoretical graph in Fig. 

18-3b has value zero at 6=0° whereas the experimental curves have a minimum 

of only -20 db.    The explanation is   that Eq.   18-27 was derived using two as- 

sumptions which are only approximately valid here.    First, only the radiation 

field was assumed present, whereas  the measured patterns are only approximate- 

ly in ehe radiation  field.     Thus  ehe j   factor contributed by Eq.   18-8 is only 

approximately valid.    Second, Eq.  18-26 assumed that the resonator field of 

the n-o mode is exactly 90* out of phase, which is not quite  true.    Hence the 

fact that the experimental patterns do not have a perfect null    seems reason- 

able. 

Improvement in the experimental radiation pattern at the frequency f    . 

was sought.    One thought was to decrease the probe depth since a smaller 

probe depth would raise Q .    Of course a smaller probe depth would nlso re- 

sult in undercoupling and a corresponding reflection of some of the incident 

power at the resonator input.     But  the increase in Q.   should cause less excita- 

tion of the neighboring n«o and n»2 modes and hence should Improve the radia- 

tion pattern. 

The experimental procedure consisted of decreasing the depth of the 

exciting probe at x ■ +2.34" while the holes at x " 0 and x ■ -2.34" were 

closed with belts  flush with the resonator wall.    The probe depth was decreased 

until tUe reflection coefficient at  resonance was -4.3 db as listed in Table 

18-1.    Tic i'»j»3ured radiation pattern is shown in Fig.   18-4.    Note that t.'e 

minim on ac  C » 0 now has  the very  low value of -34 db.    The two peaks at 

3 - * 5° are within 1,1. db of each other.    The only angular range  for which 

the measured pattern deviates significantly from theory is for 6< -13*.    The 

measured total gain compares well with the theoretical gain in Table 18-1, 
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and is 1.5 db less than Chat measured at critical coupling.  In conclusion, 

trie radiation pattern of this antenna is better than the patterns of Figs. 

18-1 and 18-2. 

D. Excitation of n»l Mode by Two Probes 

Another method of exciting the n*l mode is to use two probes, one at 

x ■ +x and the other at x » -x , where x is some distance from x ■ 0.  If the 
P P       P 

probes have the same depth and are fed out of phase, the modes for n odd can 

be excited while the modes for n even should not be excited.  Tue 180* phase 

difference between the excitations of the two probes can be provided by a 

hybrid or "magic" tee. 

The excitation circuit is shown in Fig. 18-5. When the two probes are at 

the same depth then the reflection coefficients at the probes are equal.  A 

iiybrid tee has the following important properties: 

1) The reflection coefficient at the input port 4 is one half of the sum 

of the reflection coetficients at ports 1 and 2 (of the probes in this 

case) for a matched condition at port 3. [p  ■ 1/2 (p>.+p2)] 

2) The power absorbed by a matched load at port 3 is proportional to the 

square of the difference between the reflection coefficients at ports 

1 and 2. [P^^-P^2 ] 

The probe depths were made exactly equal by using the following procedure. 

Power was fed into port 4 of the hybrid tee using the reflectometer setup to ob- 

serve the reflected power versus frequency.  The frequency was swept from f 

to f „ to enable observation of the n»o, 1, and 2 modes.  First the probes were 
n»2 

inserted to about equal depths and until the n«i mode was observed to be approxi- 

mately critically coupled.  The reflectometer pattern then showed that the n»o 

and 2 modes were also being excited, although they were considerably undercoupled. 

Next the power at port 3 was minimized by adjusting the depth of just one of the 

probes.  After this adjustment the n~o and 2 modes had disappeared from the 
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reflectometer pattern, wiille the n=I mode was critically coupled.  Althouth the 

power at port 3 was not zero, it was 22 db below the input power to port 4. 

The radiation pattern at frequency f . was then measured and  is plotted in 

Fig. 18-6. The minimum at 6 - 0* is -22.5 db down, which is somewhat better 

than the -20 db obtained previously with one critically coupled probe.  Recall, 

however, that -34 db was obtained with the undercoupled probe as shown in 18-4. 

The measured total gain of the antenna excited by two probes was 9 db for a 

ground plane extending from y ■ -7/16" to +7/16".  Finally the two probe method 

produces peaks at 6- ±5° which differ by only 0.6 db. This difference is smaller 

than that obtained with one probe and shows the merit of the two probe method of 

excitation. 

XIX.  CONCLUSIONS AND RECOMMENDATIONS 

A closed microwave resonator was developed in which the fields are rectangular 

beam waveguide modes. The resonator was transformed into an antenna by making one 

of its walls partially transparent. 

The theory of the rectangular beam waveguide resonator was presented in 

Section XIV. The beam modes resonate between two conducting surfaces which are sep- 

arated by rr radians of phase shift.  The modes resonate at distinct frequencies 

but all have the same unloaded Q. The excitation of the various modes by a probe 

was analyzed. An experimental resonator was fabricated as described in section 

XV.  An X band reflectometer was used to measure its resonant frequencies, Q's 

and reflection coefficients at resonance.  The measured values agreed very well 

witli those predicted by theory. 

The rectangular beam waveguide antenna was proposed in Section XVI.  The 

theories of a slot and of a row of holes as apertures in the wall of the resonator 

were presented. The radiation pattern of the n-o mode of an antenna of infinite 

length was shown to be a Gaussian beam.  Calculations were also made on the effect 

285. 



r—: ■ ramgm 

FIG.   18-6        RADIATION PATTERN OF ANTENNA EXCITED IN 
THE n = 1 MODE 

(TWO PROBES) 

286. 



of & finite antenna length on  the radiation pattern.    The measurements made In 

Section XVII showed that a sufficiently narrow slot aperture could not be fabri- 

cated, but  that a row of closely spaced circular holes produced the desired 

Gaussian radiation pattern.    The measured total gain was found to be 12 db in 

this instance. 

The n=»l mode of the antenna was investigated in section XVIII because of 

its possible application to monopulse radar and tracking.    The theoretical 

antisymmetric radiation pattern of this mode is the derivative of a Gaussian. 

The pattern was best produced experimentally by exciting the resonator-antenna 

with either one undercoupled probe or two probes fed out of phase.    Experimental 

work remains to be done in testing a complete monopulse system containing this 

antenna. 

In conclusion, it appears that the rectangular beam waveguide resonator-an- 

tenna is practical and has several desirable features.     It is small in size, 

quite easy to fabricate, and low in cost.    The n-o mode  radiation pattern is a 

narrow beam Gaussian with the sidelobes down more than 30 db from the peak.    The 

radiation pattern of the n-1 mode is the derivative of a Gaussian.    These two 

radiation patterns, evidently unobtainable until now, are an ideal pair of pat- 

terns for use in monopulse radar and tracing. 
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